- Main
Predictive modeling of U.S. health care spending in late life
Published Web Location
https://doi.org/10.1126/science.aar5045Abstract
That one-quarter of Medicare spending in the United States occurs in the last year of life is commonly interpreted as waste. But this interpretation presumes knowledge of who will die and when. Here we analyze how spending is distributed by predicted mortality, based on a machine-learning model of annual mortality risk built using Medicare claims. Death is highly unpredictable. Less than 5% of spending is accounted for by individuals with predicted mortality above 50%. The simple fact that we spend more on the sick-both on those who recover and those who die-accounts for 30 to 50% of the concentration of spending on the dead. Our results suggest that spending on the ex post dead does not necessarily mean that we spend on the ex ante "hopeless."
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-