Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Correlation and Agreement of Yttrium-90 Positron Emission Tomography/Computed Tomography with Ex Vivo Radioembolization Microsphere Deposition in the Rabbit VX2 Liver Tumor Model

Abstract

Purpose

To demonstrate a stronger correlation and agreement of yttrium-90 (90Y) positron emission tomography (PET)/computed tomography (CT) measurements with explant liver tumor dosing compared with the standard model (SM) for radioembolization.

Materials and methods

Hepatic VX2 tumors were implanted into New Zealand white rabbits, with growth confirmed by 7 T magnetic resonance imaging. Seventeen VX2 rabbits provided 33 analyzed tumors. Treatment volumes were calculated from manually drawn volumes of interest (VOI) with three-dimensional surface renderings. Radioembolization was performed with glass 90Y microspheres. PET/CT imaging was completed with scatter and attenuation correction. Three-dimensional ellipsoid VOI were drawn to encompass tumors on fused images. Tumors and livers were then explanted for inductively coupled plasma (ICP)-optical emission spectroscopy (OES) analysis of microsphere content. 90Y PET/CT and SM measurements were compared with reference standard ICP-OES measurements of tumor dosing with Pearson correlation and Bland-Altman analyses for agreement testing with and without adjustment for tumor necrosis.

Results

The median infused activity was 33.3 MBq (range, 5.9-152.9). Tumor dose was significantly correlated with 90Y PET/CT measurements (r = 0.903, P < .001) and SM estimates (r = 0.607, P < .001). Bland-Altman analyses showed that the SM tended to underestimate the tumor dosing by a mean of -8.5 Gy (CI, -26.3-9.3), and the degree of underestimation increased to a mean of -18.3 Gy (CI, -38.5-1.9) after the adjustment for tumor necrosis.

Conclusions

90Y PET/CT estimates were strongly correlated and had better agreement with reference measurements of tumor dosing than SM estimates.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View