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Transform-Both-Sides Approach for Overdispersed
Binomial Data When N is Unobserved

Dong K. KiM and Jeremy M. G. TAYLOR*

A common complication in analyzing binomial data is overdispersion, where the observed variation exceeds that predicted from the
binomial distribution with parameters N and P. We consider the situation where N is not observed and variable. To estimate the
regression parameters associated with covariates, we apply the transform-both-sides method. Based on the first-order asymptotic
variance stabilizing transformation, we develop the arcsine transformation family indexed by a single parameter. This family includes
the square root and the arcsine transformations as special cases. Asymptotic properties of the transformation methods are obtained.
Simulation study indicates that the arcsine transformation family is more efficient than the square root and arcsine transformations
when there is moderate overdispersion. These approaches are applied to a data set from radiobiology.

KEY WORDS: Arcsine transformation family; Dose-response model; Extrabinomial variation; Variance stabilizing transformation.

1. INTRODUCTION
1.1 Overdispersion Due to Variability of N

For binomial outcomes, y;,i =1, 2, . . . , n with parameters
N; and P;, the observed variation of the response frequently
exceeds the nominal variance determined by N; and P;. In

epidemiologic studies or in certain toxicological experiments -

with laboratory animals, overdispersion occurs due to vari-
ability of P;, which varies from unit to unit of the experiment
(Haseman and Kupper 1979; Williams 1982).

Overdispersion due to variability of V; can arise in certain
dose-response models when the binomial count, N;, is not
known exactly (Kim 1991). This overdispersion problem
can occur in various situations; for example:

1. In dose-response models, we observe the number of
cells that are alive after a certain dose, but we are not exactly
sure of the total number of cells before the dose is given. The
response is the number of cells that remain after the treated
dose.

2. We count the number of people who have a certain
disease, and want to compare the disease rate between geo-
graphic regions. But we do not know exactly the total number
of people who are in these geographic regions, and need to
estimate this number from other sources.

The following is a data set that exhibits overdispersion
due to variability of N; in a dose-response model. Figure 1
shows the data from a specific experiment undertaken at the
University of California, Los Angeles, in which surviving
jejunal crypts in mice are counted after a single dose of ra-
diation. A jejunal crypt can be thought of as a compartment
that contains stem cells in a certain region of the intestine.
These stem cells are ultimately responsible for maintaining
the function of the intestine. We are interested in modeling
the effect of dose on the response. Each point represents one
animal, and we observe the number of jejunal crypts present
in a cross-sectional slice following a specific dose of gamma
rays. For each animal, we assume that the number of crypts

* Dong K. Kim is an Assistant Professor, Department of Mathematics,
Statistics and Computer Science, and Program in Surgical Oncology, Uni-
versity of Illinois, Chicago, IL 60607-7045. Jeremy M. G. Taylor is an As-
sociate Professor, Department of Biostatistics, University of California, Los
Angeles, CA 90024. This work was partially supported by National Institutes
of Health Grants R29-CA45216 and AI29196.

follows a binomial distribution with parameters N; and P;,
where N; is the total number of crypts before the dose is
given and P; is a parameter related to the dose level. One
problem in this data is that we are not exactly sure of the
total number of crypts &;, although N; is believed to be
approximately 160. The reason that &, is unobserved is be-
cause it is necessary to sacrifice the animal to observe the
number of jejunal crypts present.

1.2 Notation and Objective

Assume a column vector of binomial observations y = (y,
V2, ..., ¥»)7 and an n X p matrix X with the values of p
covariates X;, Xz, ..., X, as its p X 1 row vector. The in-
dependent binomial observations y;, i = 1, 2, ..., 1, have
parameters N; and P;, with P; fixed at 6; and N; unknown
and variable. Assume that E(y;|N;) = N;0; and var(y;|N;)
= N;6;(1 — 6;), where 6, = g '(x7B), g is a known link
function, and 8 = (8, B2, - . ., ﬁ,,)Tare unknown parameters
associated with the covariates. :

To estimate @ from this overdispersed binomial data, it is
necessary to assume something about the distribution of N;.
Our estimation procedures are based on the assumptions
that E(N;) = m; (m;: known) and var(N;) = m;y (v: un-
known). The latter assumption is motivated by its common,
usage for count data, convenience, and the fact that for the
special case v = 1, the resulting distribution for y; has the
same first two moments as a Poisson. The aim of this article
is to apply the transform-both-sides (TBS) method to estimate
regression parameter 8 and obtain the properties of the es-
timates of 3.

In Section 2, we present the basic idea of the TBS method.
In Section 3, we derive a family of transformations and de-
scribe the maximum likelihood estimation procedure for
obtaining estimates of 8. The family of transformations that
we call the arcsine transformation family is based on the
first-order asymptotic variance stabilizing transformation.
Also, we apply the TBS method using known transformations
such as the square root and the arcsine transformations,
which are special cases of the arcsine transformation family.
We present asymptotic results concerning the estimates of
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Figure 1. Surviving Jejunal Crypts as a Function of Dose. Each point
indicates one animal. The number of crypts present in a cross-sectional
slice is observed at the specific dose of gamma rays.

B in Section 4. We use robust procedures (Hernandez and
Johnson 1980; Huber 1981; Liang and Zeger 1986) to esti-
mate the asymptotic covariance matrix of the estimates. We
describe a simulation study in Section 5 and analyze the
jejunum crypts data set in Section 6. Finally, in Section 7
we present some conclusions and discussion.

2. TRANSFORM-BOTH-SIDES METHOD

Transformations for regression models have been used in
several ways. We might assume that some transformed form
of the response variable satisfies a normal theory linear
model. Let A(y, \) be a family of transformations of y in-
dexed by A. Box and Cox (1964) suggested the family of
power transformations of the response with the aim of
achieving a simple additive or linear model, homoscedastistic
error, and normally distributed errors. Box and Cox used
the model A(y, \) = X”8 + ¢, where

y -1
X b

h(y, N\) = A # 0 (=In(y), A = 0).
Here ¢; are iid with E(¢;) = 0 and var(e;) = o2 and distri-
bution function F.

Carroll and Ruppert (1984) suggested the TBS method
when a model f(X, ) has already been chosen empirically
or from theoretical consideration to fit y. The TBS method
assumes that after applying the same power transformation
toy and f(X, B), the residuals are normally distributed with
constant variance; that is, A(y, A\) = A(f(X, B), A) + e,
where ¢;, i = 1, 2, ..., n are iid normal with mean 0 and
variance o2. The main use of the TBS method is to achieve
homogeneity of variance on the transformed scale.

3. ARCSINE TRANSFORMATION FAMILY
3.1 Variance Stabilizing Transformation

When N, is unknown and P; is fixed at 6;, the mean
function is E(y;) = E(E(y:|N:)) = E(N.8,) = E(N;)b;
and the variance function is var(y;) = E(var(y;|N;))
+ var(E(y;|N;)) = E(N;)8;(1 — 6;) + var(N;)8?. When
we add the assumptions on N; that E(N;) = m; (known)
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and var(N;) = m,y (v: unknown), then the mean and vari-
ance functions are

E(y;) = wi = myb, n
and
var(y;) = V, = V(w, v) = mib;(1 — 0;) + mv0?
HMi
= MK; 1+ _1 .
u( (v )mi) @

Some interpretations of V' (u;, ) for various values of v
are given in Table 1. We have a binomial model without
extra variation when v = 0; when v = 1, the variance is the
same as that of a Poisson model without extra variation.
When vy > 1, the observations have the same variance as
overdispersed Poisson data (Breslow 1984, 1990) whose dis-
tribution is negative binomial. An interesting region is 0 < vy
< 1. In this region, we have an overdispersed binomial model,
which has different variance from the beta binomial model.
In the beta binomial model, N; is fixed and the first two
moments of P; are determined from the beta distribution
(Williams 1982). Our model can also be interpreted as an
underdispersed Poisson model in this region. When v < 0,
the variance in Table 1 represents an underdispersed bino-
mial model. Although the motivation for the form of V' (u,,
v) arose from the assumption that var(N,) = ym;, which
permits only nonnegative values of v, negative values of
are permitted in the family defined by V' (u;, ), provided
that V' (u,, v) is positive. Brooks, James, and Grey (1991)
considered sub-binomial variation compared to binomial
variation in the study of sex combinations in litters of pigs.
The form of the variance function in Table 1 differs from
that of Brooks et al. (1991), who used a beta binomial model
assuming a negative variance for P;.

Notice that the variance function involves the unknown
parameter vy, and hence the variance stabilizing transfor-
mation family for this overdispersed binomial data will be
indexed by the parameter vy. The variance stabilizing trans-
formation seeks a function 4(y;, v) such that var A(y;, v)
= (h’(u, v))*V (ui, v) is a constant, which implies

1

Vi
h(pi, v) =f0 Wie v)

3)

dp,,‘ .

Proposition 1. Arcsine Transformation Family for
Overdispersed Binomial Data. When y;, conditional on
N, isa binomial count and unconditionally has the variance

Table 1. Classification of the Overdispersed Binomial Model

¥ V(w, v) Model
¥y<0 wi(1 + (v = Nw/my) Underdispersed binomial model
vy=0 wi(m; — w)/m; Binomial model
0<y<1 w(1 = — y)u/m) Overdispersed binomial model
Underdispersed Poisson model
y=1 i Poisson model
y>1 w(1 + (v — Nw/m) Overdispersed Poisson model
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function shown in Table 1, then 4 is a first-order asymptotic
variance stabilizing transformation where

m; . 1 - i
h(yi’7)=\/1_781n l\/%,
m

1-—< y<l1, Vi
Vi
h(yi,v)
A /W_n_@?(ln(, /('Y:nil)yi_i_ (*r:nil)y.-Jrl
y>1,
and
hyov)=Vy,  v=1
Furthermore,
7l_iQ_nll+ h(yi,v) = }jgl_ h(yisv) = h(yi, 1).

Proof. 1t is easy to verify that A(y;, v) satisfies Equation
(3). For the proof of the limit, we use the Taylor series ex-
pansion about vy = 1; that is,

. ) .

h(yisv) = Vo
Thus the limiting transformation as v tends to 1 is the square
root.

In this article, because we assume that the first two mo-
ments of the response are known, we use the TBS method
by applying the same transformation to the response and to
the mean function. When we use the TBS method with the
arcsine transformation family, we assume that A(y;, A)
=h(ui, \)+e,i=1,2,...,n, where ¢ are iid with E(¢;)
=0 and var(e¢;) = o with distribution F. Furthermore, o
~ 1 when the observation y; has the first two moments (1)
and (2). This is because o> = var(e;) = (h'(u:, v))*var(y;,
v)~i.

Anscombe (1948) derived the square root, arcsine, and
hyperbolic arcsine transformations as variance stabilizing
transformations for Poisson, binomial, and negative binomial
distributions. The arcsine transformation family that we de-
rived here is a continuous function of a single scalar v and
includes the aforementioned three transformations as special
cases. Although it is not immediately obvious, it can be
shown that /(y;, v) for ¥ > 1 can be written as

x(1+1“‘7’y"

— ~)24,2
R
6 m;

40 m?

sinh~! (7 _ l)yl
m; ’

m;

v—1

h(yh 7) =

which has the same form as that of Beall (1942).

3.2 Estimation

The estimation procedure for the parameters 8 and v is
the same as that of the Box—Cox transformation family. We
use maximum likelihood assuming that the transformed data
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is normal. Let the Jacobian of the transformation y; = h(y;,
v) be J;(7v); that is,

a is
Jiyy = 201

9y
It is simple to show that
(i, v) _ 1 Vm,
W 2Vy Vm = (=)

for all values of . Under the normality assumption, the log-
likelihood of y;, 3, ..., y,is given by

LB, 7, 0) = — g log(27) — g log o?

- h i _h is 2 .
(h(y v)zaz(u 7)) +3 log J,(v).

i=1

- “)

i=1
For fixed 8 and #, the log-likelihood is maximized in ¢ by
2 Wiy ) = h(u, v))?

(%)% = )
n

and the maximum likelihood estimates of 8 and ¥ maximize

* 2
L(B,7) = L(B, v, 0*) = =7 m(ﬂzy)) -1

where

n 1/n
Jy) = (H J,(v)) .
i=1

Although there are several possible algorithms for finding
the maximum likelihood estimates, including the Newton—
Raphson algorithm, we apply the block relaxation algorithm
(De Leeuw 1993). The block relaxation algorithm is an it-
erative scheme to find the maximum over a set of parameters.
In this algorithm, we group the parameters in several blocks
and maximize the likelihood function over parameters in a
specific block, keeping the parameters in other blocks fixed.
We iterate this scheme over all blocks until convergence. To
find the maximum likelihood estimate for the TBS method
using the arcsine transformation family, the block relaxation
algorithm has the following iterations:

1. Set k < 1; start with an initial value, vy, for the
arcsine transformation family parameter.

2. Obtain B that maximizes L(8, v ), keeping v fixed
at v,

3. Obtain v **! that maximizes L(8®, v), keeping 8
fixed at 8.

4. Set k <= k + 1 and go to Step 2. Continue until con-
vergence.

In Step 2, we use the Gauss—-Newton nonlinear least
squares method as described in Section 3.3. In Step 3, because
the log-likelihood function is continuous in v, this function
may be easily maximized by standard optimization tech-
niques. We applied a Newton-Raphson algorithm with a step-
halving procedure for Step 3. We found that the block re-
laxation algorithm, which finds estimates of 8 and ¥ sepa-
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rately, was more numerically stable than a Newton—Raphson
algorithm, which finds the estimates of 8 and v jointly.

3.3 Special Cases: Square Root and Arcsine
Transformations

When vy = 1, the variance of y has the same form as Pois-
son data; thus we can use the square root transformation to
stabilize the variance. After transforming the data, we have

v;=‘/;+ei3

where w; = m;0;, E(¢;) = 0, and var(e,) = ¢2. This is a
nonlinear regression problem, so we can use the Gauss—
Newton nonlinear least squares algorithm to estimate 3.

When v = 0, the variance of y is the same as that of
binomial data. Thus the arcsine transformation can be used;
that is,

. Vi - Mi .
Vmsin™'\ /= = Vm;sin™'\ /| = +¢, i=1,2,...,n,
m; m,

where E(e,) = 0 and var(e;) = ¢2. Similarly, we can use
Gauss—-Newton nonlinear least squares to estimate 3.

The Gauss-Newton algorithm is an iterative scheme that
minimizes

i=1,2,...,n,

2 (h(y:) = h(w))>.
i=1

Each iteration is based on the linearization of A(u,) and
given by

n -1
BUTD =B 4 (2 D?(h'(u,))zDi)

i=1

X 2 DR (u)(h(p:) = b)),

i=1
where h/(ﬂi) = ah(ui)/au,« and D,' = 8u,/8ﬁ
4. ASYMPTOTIC RESULTS
4.1 Asymptotic Bias and Asymptotic Normality

We derived the arcsine transformation family based on
the first-order variance stabilizing transformation and used
a normality assumption to estimate parameters (8, v, o).
Suppose that the observation, y;, comes from the probability
density function w( ). The exact form of the distribution
w( ) may be unknown; however, the first two moments of
y; are given by (1) and (2). From the log-likelihood (4), we
define the score functions for (8, v, o) by

L(B, 7, SL(8,7,
U8y, 0) =BT B,y = LD,
and
BL(B, v,
Us(B, 7, 0) = %.

Let (8*, v*, o*) be the estimate obtained by setting these
score functions equal to 0 and let (8%, v®, %) be a solution
of E.(U;(B, v, c))=0,i=1,2, 3. Under certain regularity

Journal of the American Statistical Association, September 1994

conditions, we have (8%, v*, ¢*) = (8%, v, ¢%°) almost
surely (Hernandez and Johnson 1980). Also, let (8°, v°) be
the true value of the parameters under the assumption that
the observations y; come from the underlying distribution
w( ) with the first two moments given by (1) and (2). How
close (8%, v%) is to (8°, v°) depends on how close the
transformed distribution is to a normal distribution with ho-
mogeneous variance.

Because the data after transformation by a member of the
arcsine transformation family are not exactly normal with
constant variance, we expect 3* to be an inconsistent estimate
of the true value 8°. But we can show that the magnitude
of the bias is small under certain additional assumptions.
Heuristic arguments given in the Appendix show that the
limiting term of the large-sample bias of 8* can be expressed
as

|E(8*) = B°] < O(pi"),

where uy is a weighted harmonic average of uf .

This result says that when the u;’s are large enough, so
that 1/uy is small, the bias of 8* is small and thus can es-
sentially be ignored. This result is intuitively sensible, because
if the u;’s are all small, then it is unreasonable to assume
that transformed binomial responses are normal, whereas if
the u;’s are large, then it is reasonable to assume that we can
transform the discrete y;’s to achieve approximate normality.

When the normality assumption is satisfied, the Fisher
information gives the asymptotic covariance matrix of the
estimates. In the TBS method, it is assumed that the same
value of y achieves both homogeneity of variance and nor-
mality of the transformed data; in real applications, it is un-
likely that both requirements can be achieved. So to account
for the failure of these assumptions, we use robust procedures
(Hernandez and Johnson 1980; Huber 1981; Liang and Zeger
1986) to obtain the covariance matrix of the estimates.

Theorem 2. As n — oo, we have the following.

a. The asymptotic covariance matrix of n'/2(8* — %)
is

n -1
lim n4( > (D?O)T(V?O)“D?O)
=1

n—>oo

X (2 O ey e )

i=1

n -1

X(Z (D?O)T(V?")_'D?") s (5)

i=1
where D{° = o, /8%, V' = V(u, ), and M}r
= Ey(har(¥i, Y%) = har(ud, v°°))?. Here hyp( ) is
the arcsine transformation family. The dependence of
M?; on i is deleted for convenience of notation.

b. When the normality assumption is satisfied, 8* and
v* in the arcsine transformation family are asymptot-
ically uncorrelated.

Proof. See the Appendix.
We can evaluate these expressions at the estimates to es-
timate the covariance matrix and hence construct confidence
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intervals or standard errors for 8%. Thus we obtain approx-
imate inference for 8°. The covariance matrix in Theorem
2 is robust, because the first and last terms of the expression
come from the choice of the transformation method and the
second term comes from the data. So the second term pro-
tects against choosing an inappropriate transformation that
fails to satisfy the normality assumption. When the trans-
formed data are normal with constant variance, M3%r = o2
and the asymptotic covariance matrix of n'/2(8* — %) re-
duces to
n -1

lim n402( > (D?O)T(V?o)_'D?O) ; (6)

n>oo i=1

which is the same as the inverse of the Fisher information
matrix from the normal density.

From the asymptotic result, we can estimate the covariance
matrix of 8* as if we know the value of . This result agrees
with the approximate result of the TBS method using the
Box-Cox transformation family; the limiting distribution of
B8* is the same whether or not the transformation is known
when the sample size is large and ¢ = 0 (Carroll and Ruppert
1984).

To test a hypothesis for Hy: v = v°, we apply the likelihood
ratio test. Within iterations of the block relaxation algorithm,
we can easily extract the likelihood ratio test statistics. Let
(8*, v*, o*) be the maximum likelihood estimate under the
full model and let (8*%(v°), v°, ¢*(v°)) be the maximum
likelihood estimate under the null hypothesis. The likeli-
hood ratio test for the null hypothesis H, is defined by r
= =2(L(B*(7"), v°, a*(7®)) — L(B*, v*, ¢*)), which has
an approximate asymptotic X 2 distribution with 1 degree of
freedom. The profile likelihood confidence interval for v can
be easily obtained directly by inverting the likelihood ratio
test. The 100(1 — «)% likelihood-based confidence interval
for v is

(7°:L(B*(7°), 7, e*(v")) — L(B* 7*, ¢*) > —%xi,l) :

Instead of estimating vy from the data, one might use a
known transformation, such as the square root or the arcsine
transformation, to estimate 8. Let 8** denote the estimate
from the Gauss—-Newton nonlinear least squares algorithm.
It can be shown, using arguments similar to those in the
Appendix, that as n = o0,

0 __ +
| EL(8**) — 8°] < O(uz) + 0('7—7—'),

KH

where v 7 is the assumed value of v; that is, v* = 0 for the
arcsine transformation and v* = 1 for the square root trans-
formation.

This result shows that when puy is large and the assumed
value, v 7, is close to the true value, v°, the bias tends to be
small; however, when +° is far from v *, the bias will increase.

Similar to the result in the Theorem 2, we can robustly
estimate the covariance matrix in cases of the square root
and arcsine transformations.

Corollary 3. Let 8°% be a limit of 8**. The asymptotic
covariance matrix of n'/2(8** — §°0) is

837

n -1
lim n4(z (D9°°)TV?°°(+>"D9°°)
e i=1
n
X (Z (D?°°)TV?°°<+>"'M%+>D?°°)
i=1

n -1
X (Z (D?"")TV?"O‘*’"D?O") :

i=1
where V{0 = 190 and M%) = M3r = E.(hsr(y;) — hsr
(u2))? for the square root transformation and V %0(+)
= l-"(i)oo(mi - #?OO)/mi and M%+) = Mf;r = E\(har(yi)
— hyr(19°°))? for the arcsine transformation. Here hs7( )
and h47( ) are the square root and the arcsine transfor-
mations and % = m; g~ (xT 8%°). Also, the dependence
of var and Mir on { is suppressed for ease of notation.

Proof. See the Appendix.

The covariance matrix from the foregoing results are ro-
bust, because the second term is evaluated from the data.
When M%;= ¢?and M%r = o2 in each transformation, the
covariance matrix reduces to the standard asymptotic form
obtained from a Gauss-Newton nonlinear least squares ap-
proach (Jennrich 1969). Also, the first term is obtained from
the assumed variance function that each transformation is
attempting to make homogeneous.

4.2 Numerical Evaluation of the Asymptotic
Relative Efficiency

In this section we evaluate the asymptotic relative effi-
ciency of the arcsine transformation family to the square
root and the arcsine transformations in a specific dose-
response model. In the presence of overdispersion, there is
a possible loss of efficiency in using a model that does not
allow overdispersion, although the efficiency loss may be not
so serious in moderate overdispersion (Cox 1983). In this
section we quantify the loss of efficiency of the square root
and arcsine transformations compared to the arcsine trans-
formation family when the binomial data are overdispersed.

Table 2 shows the true model used in the study. We mimic
a dose-response model in an animal experiment. We use a
logit link function and one covariate in the linear predictor.
We assume that the mean of N; is 160 and consider a range
of values for v (—.5 < y < 3.0).

To evaluate the asymptotic relative efficiency, we approx-
imate M3p, M%r, and M%7 as follows:

Table 2. True Model

Model: log(d/(1 — 6)) = Ag + Ayd

d = dose level

6 = probability of response with d chosen such that

Design 1: 6 = {.05, .20, .50, .80, .95},0 <~y <3

Design 2: 6 = {.05, .25, .45, .65, .75}, -3 <y <3

Design 3: 6 = {.05, .15, .25, .45, 65}, -5 <y <3

Ao and A, = parameters (A, = 4.0 and A, = —1.0)

The distribution of y, has two moments ,; and V, defined by (1)
and (2)
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. 2 2 1
M3 N(%M )E(yi_”i)z'—_(_—)Vi:Z,

AF — ay’ .. 2 I/l
M2 Ohsr(yi) 2E( _ )2 - (—1-)2V = _1.5
ST = i " Vi Hi 2, i 4y ’
and
har(yi)| \
Miir~ ("—/;T(y ) ) E(yi — w)?
i,
. . — . —l
=1(M_ﬂz>) v,
4 m;

Figure 2 shows the asymptotic relative efficiency (ARE)
of the arcsine transformation family to the square root and
arcsine transformations. A.1 and B.1 are the ARE’s for the
intercept (4y), and A.2 and B.2 are the ARE’s for the slope
(A4)).In A.1 and A.2, we can see that the ARE is | when vy
= 1. This is because the arcsine transformation family cor-
responds to the square root transformation when vy = 1 and
there is no inflation of the variance associated with estimating
v (Theorem 2). When « is greater than or less than 1, we
observe a loss of efficiency if the square root transformation
is used. Especially when vy < 0, which means that when the
data come from the underdispersed binomial model, the loss
of efficiency from the square root transformation is quite
large. Also, when -y = 0 for which the arcsine transformation
family reduces to the arcsine transformation, the ARE is 1
(B.1 and B.2). When v > 0 or v < 0, we observe a loss of
efficiency if the arcsine transformation is used instead of the
arcsine transformation family. Design 1, Design 2, and De-
sign 3 indicate three different sets of doses with corresponding
different sets of response probabilities, as shown in Table 2.
From these three designs, we can see that the more widely
the probability of response is distributed, the greater the ef-
ficiency gain that can be achieved by using the arcsine trans-
formation family.

5. SIMULATION STUDY

A Monte Carlo simulation was performed to evaluate the
bias, variability, and coverage properties of the parameter
estimates. In this study we mimic the dose-response model
in the animal study. The simulation study was undertaken
on an IBM PC 286 using the GAUSS programming language.
The data generating scheme for the responses y; with over-
dispersion due to variability of N; is as follows:

Scheme 1 (y = 0)

1. Generate N; from N(m, m+y) and round to the nearest
integer, where m = 160 and v = {.1, .3, .5, .7, 0, 1.0, 3.0,
5.0,7.0,9.0}.

2. Given N;, generate y; from a binomial distribution with
parameters N; and 6;, where 6, is determined by a true model
corresponding to the response probabilities in Design 1 (0
<+ =< 1) and Design 2 (v = 1).

Scheme 2 (v < 0)
1. Calculate u; = m6; and V; = V' (u;, ), where m = 160,
v ={-.5,—.4,-.3,-.2,—.1,0} and 6, is from Design 3.
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Family. Each line indicates the theoretical evaluation of the ARE in Design
1(——), Design2 (- - - ), and Design 3 (- --). The ARE to the square
root is 1 when v = 1, and the ARE to the arcsine is 1 when v = 0.

2. Generate y; from N(u;, V;) and round to the nearest
integer.

We compare the arcsine transformation family to the
square root and arcsine transformations. We generate 50
binomial responses at each dose level corresponding to 6,
where 6 is shown in Table 2, so we have 250 binomial re-
sponses in each data set. For each given value of v, we gen-
erate 500 data sets to compare the transformation methods.
We use the same linear logistic models as described in Ta-
ble 2.

Figure 3 shows the estimated bias and variance of the
transformation methods when 0 < vy < 1 (Design 1). A.1
and A.2 show the biases for the intercept and the slope. We
can see that the biases are not serious for the arcsine trans-
formation family. The arcsine transformation gives system-
atically larger bias than the square root transformation and
the arcsine transformation family, except when vy = 0. We
observe that the bias from the square root transformation is
close to the bias from the arcsine transformation family when
0 < v < 1. B.1 and B.2 show the variance of the estimate
from the transformation methods for the intercept and the
slope. We have divided the variances of each method by that
of the arcsine transformation family. The arcsine transfor-
mation gives systematically larger variance than the other
transformations, except when v = 0. Also, the square root
transformation gives larger variance than the arcsine trans-
formation family when « is far from 1 and relative variance
is close to 1 when v is close to 1.

Figure 4 shows the bias and variance of the estimates when
v = 1 for Design 2. When v = 1, the arcsine transformation
has systematically larger variance than the arcsine transfor-
mation family. The loss of efficiency of the square root trans-
formation is slightly increased when + is far from 1.

Figure 5 shows the bias and the variance of the estimates
when the data generating model is an underdispersed bi-
nomial model. We can see that the loss of efficiency from
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the square root transformation is largest in this region. The
arcsine transformation has larger variance than the arcsine
transformation family when # is far from 0.

In these simulation experiments, we observed that the
arcsine transformation performed well near v = 0 and the
square root transformation performed well near v = 1. These
results indicate that there is no cost associated with estimating
« as predicted in Theorem 2, because v* and 8* are asymp-
totically uncorrelated when the normality assumption is sat-
isfied. Moreover, we can see that the Monte Carlo asymptotic
relative efficiencies in Design 1, Design 2, and Design 3 (Figs.
3, 4, and 5) are quite close to the theoretical asymptotic
relative efficiencies (Fig. 2).

Figure 6 shows the coverage rates of the three transfor-
mation methods. Coverage rates are averaged over the in-
tercept and the slope, because the two results are almost
identical. The confidence intervals are obtained using the
robust asymptotic variances as described in Equation (5). In
the asymptotic covariance matrix, we estimate M%r, M3,
and M?%; from the data without assuming that each trans-
formation method produces homogeneous errors. So we use
the estimate

(MAR)* = (hae(yi, ¥*) — hap(uf, v*))? for each i.

Estimates of M%and M%7 are obtained in a similar way.

From the simulation, we observe that the arcsine trans-
formation family gives quite good coverage rates, with a range
of 86.0-96.0% coverage at the 95% nominal rate. The cov-
erage rates from the square root transformation method are
also very close to the nominal rate. On the other hand, the
arcsine transformation has poor coverage rates when 7 is far
from 0. We observe a 56.1% coverage at the 95% nominal
rate when v = 1.0 in Design 1. One of the reason for the
poor coverage rate of the arcsine transformation is that when
v is far from 0, the bias of the arcsine transformation is quite
large in Figures 3, 4, and 5, so even the “robust” method
will not give correct coverage properties.

We compared the coverage rates of the robust confidence
intervals to those of the nonrobust confidence intervals ob-
tained from the standard Fisher information matrix (6). We
found very little difference between two coverage rates for
three designs considered, suggesting that using the robust
variance estimate is frequently not necessary.

Table 3 shows the average and standard deviations of the
estimates of the parameter v from the arcsine transformation
family. We can see that the estimates are close to the true
value of v, but that the biases and the standard deviations
increase as v increases. This indicates that we can get more
precise estimates of v when vy < 1, especially for underdis-
persed binomial data (v < 0). For overdispersed Poisson
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Figure 4. Estimated Biases and Variances of the Transformation Methods (Design 2). When v > 1, efficiency losses relative to the square root

(- -+ +)and arcsine transformations (- - -) are observed.

data (v > 1), the estimates of v have large standard devia-
tions, so the estimates may be less precise. Figure 6B shows
the coverage rates of the parameter v from the arcsine trans-
formation family for Design 1, calculated by the likelihood-
based approach. We observe rates of 91.6-94.8% at the 95%
nominal level. For the other two designs, the coverage rates
were similar, except when v was very large or much less
than 0.

6. APPLICATION TO RADIATION BIOLOGY DATA

Surviving jejunal crypts in mice following a specific dose
of gamma rays are studied at the department of Radiation
Oncology, University of California, Los Angeles. We have
126 observations in this data set, as shown in Figure 1.

As a first approximation, it is reasonable to believe that
the response (i.e., the number of crypts) is binomial with
parameters V; and 6;, but N; is unknown. The overdispersion
problem in these data is due to variability of the unobserved
total counts N;, as described in Section 1.1.

We apply the TBS method using the three different ap-
proaches we have described. Because we have prior knowl-
edge that the total count before the dose is given, NV;, is dis-
tributed around 160, we use this knowledge to analyze the
data. Thus we use E(N;) = 160 for the TBS method.

Table 4 shows the estimates of the regression parameter
B and the additional parameter v. The first line is a result
from a standard logistic regression analysis in which V; is
assumed to be known and fixed at 160, and the following
lines are results from the TBS method. We can see that the

point estimates of the regression parameter are quite similar
to those from the TBS method, but the standard errors of
the logistic regression model are slightly smaller than those
given by the TBS method.

The differences between the standard errors are not large,
which indicates that the overdispersion problem is not serious
in this data set. The estimate of the additional parameter, v,
which allows for overdispersion in the arcsine transformation
family, is 2.41.

Figure 7 shows the residual plots from the TBS method.
A.1, A.2, and A.3 show the residual plots versus the fitted
value from the arcsine transformation, the square root trans-
formation, and the arcsine transformation family. We can
see that the arcsine transformation does not produce ho-
mogeneous errors (A.1), whereas the square root transfor-
mation (A.2) and the arcsine transformation family (A.3)
appear quite homogeneous. We calculated the Spearman
rank correlation between the absolute residuals and the fitted
values to access the homogeneity of variance of the residuals
(Carroll and Ruppert 1988, p. 147). The correlation from
the arcsine transformation is .179 (p = .045), whereas the
correlation from the square root transformation (.062, p
= 487) and the arcsine transformation family (—.015, p
= .868) are smaller. B.1, B.2, and B.3 of Figure 7 show the
Q-Q plots of the residual from the transformation methods.
We can see that the Q-Q plot of the arcsine transformation
is quite curved and that of the square root transformation
is nearly linear. The Q-Q plot of the arcsine transformation
family is very nearly linear, indicating that the residuals are
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approximately normally distributed. The residual plot and
the Q-Q plot of the square root transformation are close to
those of the arcsine transformation family because y* = 2.41
and the confidence interval, (.56, 6.73), includes the square
root transformation (y = 1). We can see that the profile
confidence interval for v is asymmetric around the point
estimate.

7. CONCLUSION

In this article we focus on the overdispersion problem in
binomial data due to variability of V;, where N; is an unob-
served random variable. When overdispersion exists in bi-
nomial data, the parameter estimates from standard methods
of analysis that ignore overdispersion will tend not to be
seriously biased, but the standard errors will generally be too
small.

We apply the TBS method to solve this overdispersion
problem. We develop the arcsine transformation family, in-
dexed by a single parameter, which contains the square root
and the arcsine transformation as special cases. The arcsine
transformation family is asymptotically equivalent to the
fixed arcsine and the square root transformations when 7 is
equal to 0 or to 1, and is more efficient than those fixed
transformations in other cases. Moreover, the regression pa-
rameter 8 and additional parameter y are asymptotically
uncorrelated for the TBS method using the arcsine trans-
formation family when the transformed data are assumed

to follow a normal distribution. The simulation study and
the application from radiobiology support these results.

For data with considerable overdispersion (y > 1), we
found that the square root transformation performs almost
as well as the arcsine transformation family. So in this setting,
the square root TBS approach is a simple and attractive
method. But for approximately binomial data (v ~ 0), using
the square root transformation is not as efficient as using the
arcsine transformation family. The arcsine transformation
performs substantially worse than the arcsine transformation
family, unless v is very close to 0. We do not recommend
using the arcsine transformation if overdispersion is sus-
pected.

An attractive feature of the TBS method is that it is com-
putationally fairly simple. When v is known, we can use
Gauss—-Newton nonlinear least squares to estimate 8. When
v is unknown, we need an optimization routine to estimate
the parameters 8 and v, which maximize the likelihood. For
a numerical technique, we applied the block relaxation al-
gorithm. This algorithm separates 8 and v and gives us a
computationally stable method for obtaining the maximum
likelihood estimates. Another numerical technique is an ap-
plication of the Gauss-Newton algorithm by adapting
“pseudo-observations” (Carroll and Ruppert 1988).

In this article we have focused on applying the arcsine
transformation family in the setting where we have binomial
data but N; is unobserved. But the arcsine transformation
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Coverage rates of beta are based on the robust method. Coverage rates are close to the nominal rate, except for the arcsine transformation in Design

1. Coverage rates of gamma are based on the likelihood-based approach.

family may have broader applicability to the situation where
we observe overdispersed binomial data with known N; or
overdispersed or underdispersed Poisson count data.

In the application and simulations, m1; was set at 160. One
might expect the performance of the procedure to break
down if m; is small (<10) or if E(y;) (=m;6;) is very small
(<5) for a substantial number of the observations, because

in these situations it may not be reasonable to approximate -

a discrete distribution by a normal.

Other approaches to analyzing data with overdispersion
due to uncertainty in N, are possible. In other work (Kim
1991), we have considered two alternative methods. The
first is a quadratic estimating equations/quasi-likelihood
approach based on the first two moments of y,. The second
is a finite mixture model approach, where the distribution
of N; has known range and is specified either parametrically,

nonparametrically, or semiparametrically. A comparison of
these methods is beyond the scope of this article.

APPENDIX: PROOFS

Sketch Proof of the Result that |E(8") — 8°] < O(ui")

We prove this when B is univariate. Let 8*(y*) be the estimate
of 8 when « is estimated and let 8*(y®) be the estimate of 8 when
v = v%, where v* = v in probability. Then we have

E.(8* — B°) = E,(B*(~v*) — B%)

= Eu(B*(v*) — B*(v™)) + E.(B*(~®) — 8°).
Because v* — v% and 8*() is a continuous function of v, the
first term converges to 0. Let L(8, v°) be the likelihood equation

with fixed ¥ = ¥%. Then the score and the information functions
for 8*(~y®) are defined by

Table 3. Average and Standard Deviations of Estimates of v From the Arcsine Transformation Family

Design 1 Design 2 Design 3

True v Average S.D. True v Average S.D. True v Average S.D.
.0 .002 .011 1.0 0.953 0.367 .0 -.037 131

A 107 .038 3.0 2.888 1.157 -1 -.126 123

3 .303 .085 5.0 4.744 2.099 -2 —-.209 .087

5 .487 127 7.0 6.298 2.999 -.3 —.297 .065

7 .693 .198 9.0 7.596 3.928 -4 -.392 .038
1.0 .957 .251 -5 —.494 .014

NOTE: Number of simulations: 500.
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Table 4. Estimates of the Regression Parameter 8 and the Additional Parameter y

B
Method Constant (s.e.) Slope (s.e.) v (95% C.1.)
Logistic? 7.4315 (.1748) —1.1853 (.0241) —
Transform-both-sides
Arcsine 7.4979 (.2010) —1.1956 (.0267) —
Square-root 7.4469 (.1953) —1.1893 (.0259) —
Arcsine family 7.4144 (.1941) —1.1853 (.0257) 2.41 (.56, 6.73)°

* Logistic regression with N; is fixed at m = 160.
® Profile likelihood confidence interval.

U, (B(v*), v*)
_aL(B. 1)

a6
_ En: h(yh 700) — h(ﬂh 700))(6}1(“15 700))(%)
i=1 o’ L a6
aZL /9, 00
and 1 (8(y®)) = - T

We assume that U,(8(y*), ¥®) is continuous and that

i(B, B°) = EW(1,(B(¥®))) = T(B) > 0.
We also assume that under certain regularity conditions, we have
in the open neighborhood of 8,

L(B(v®))
h

- I(B), (A1)

ip.
Here, “ip”
of continuity of U,(8(y%), v
(8%(v™), B°) such that

Un(B*(v®), v%) = Un(B°, v*) = L(B*)(BX(v*) — B).

means to converge in probability. Under the assumption
00), we can obtain 8% in the interval

From (A.1), when 7 is large enough, we can obtain 8* that satisfies

In(/9+)> (B™)
n 4 -

E LB\
it n
0 .00
< 4 E, U.(8°, ™)
I(B*) n
Let u? be a evaluation of u; at 8°. Then we have
Un(8°, ¥*)
n

Thus we have
U, (8° v*)

)

| EL(B¥(v*)) — 8°l =

)

h(pi, v*)
ouf

h(y, v%) = h(p], v*)

0,2

L0}
a8°

NZE]

.( )57 )

From the Taylor series expansion of A(y;, ¥%) at u?, we have

S |-

1

h(yh ‘YOO) = h(”’?, ,YOO) + h’(”’?» ‘YOO)(yi - ﬂ?)

B *(y®) is a solution of ), y%) = 0, we h R0, ¥ .
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Figure 7. Residual Plots From the Transformation Methods. Standardized residuals are shown (Carroll and Ruppert 1988, p. 147).
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Ew(yi - ﬂ?) = O and Ew(yi - I-l'?)2 = V(ﬂ?a 70)'
Also, we can verify that

hl(ﬂ'ia 7) =
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1 Mi
By ) = — ——= 1 +2(y — L)
(ks Y) 4[/,"/7’( (v )m’)

Thus, when we assume that the absolute value of du, /98 is bounded,

2V, the first-order term of E,,(U,(8°, v%°)/n) disappears and the second-
and order term gives us
112 00 0 ah(ﬂu 'Y ) Iv"r
R " 19 V ’ s - a0
o_zngh(ﬂ W ) ao aﬂo
1 12 1+ 2(y® - 1)8? ) R 1 i 1 ( ) _
= - T =\ <=0 ! 5
67 2 (V(u. OV (W, ™) R ] VWl ) 38°| |n =E w (wir)
where 19U,(B,d 1
- __1(_@00__2 =—B; + 0,(1),
I B R Gttt AV R R C A VU AYR n 9B n
o160\ 1+ (v® = 1DoY N1+ (v - 1)6YJ\a8°) where
Here py is a weighted harmonic average of pf . B 7, (D®)T(V ©)-1p®
n= 452 s
Proof of Theorem 2 19U, (8, )
Taam oW
a. Let & = (v, o2). The score functions for (8, 8) are
and
OL
U (8,98) = » 18U,(8,8) 1
TR T a® By + 0,(1),
and
T where B, is a 2 X 2 matrix whose elements are the second
aL oL oL re . Conete> ar
U,(B,8) = —,. T derivatives of the score function U,(8%, §*) with respect to
dy " do 5 evaluated at 6%. Thus the joint asymptotic distribution of
Using the Taylor series expansion, we have n'2(8* — B%, 6* — 6°)7 is Gaussian with mean 0 and co-
18U, (8, 8) 1 0UL(8, 8) ~1 variance matrix
— g " n 00 Tn % Bil 0 \/Z, Z;,\/Bil O
v_(ﬁ* 8 )_ n 9B n 9 lim n( 1 _1)( |T| 12)( 11 _|)-
8% — 8% _18U(B,8) _ 18Ux(B,8) meeo \ 0 Bu/\Zi2 Zn/\ 0 By
n  9B%® n o 9% So the covariance matrix of n'/2(8* — 8%) is
L g™, ) lim (BT Z,Bi).
| Vn | + 0,01 o
1 o o0 0p(1)- Here we can easily verify that
— U, ,0
Vn 28 ) (LD VEO)Eh(,v®) = h(1®,v*)*DY)

As n = oo, (712U (B, 6%, n712U,(B%, §°°)T) has an
asymptotic normal distribution with mean 0 and covariance
matrix =, where

EIZ)

E22 ’

EIl
2 = lim
n—>oo n 2|2
whose elements are defined by
2y = cov(Ui(B%, 8))
= 3 EJ(U(B%, 8%) U, (B, §°)),
i=1

21, = cov(Ui(B%, 8°), U»(B%, §%))

= En: E(Ui(B%, 8°)TU»(8%, %)),

i=1

2y = cov(Ux(B%, 8°))

= EnJ E(Uy(B%, 8%)TU(B%, §°)).

i=1

Also, as n = oo, we have

2ll

4q4

b. Under the normality assumption, we can obtain the infor-
mation matrix from the second derivative of the log-likelihood
(4). It is easy to prove the information matrix is block diagonal;
this follows because =, evaluated at 8% equals 0. (For the
detailed proof, see Kim 1991.)

Proof of Corollary 3

From the Taylor series expansion of the Gauss-Newton score
equation, we have

Vn(g** — %) = (—

10ULB)\™( Uy(B™)
o) (V) o

Using the similar arguments as given in the proof of Theorem 2,
we can verify the results.

[Received September 1992. Revised October 1993.]
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