Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Umbilical Cord Erythroferrone Is Inversely Associated with Hepcidin, but Does Not Capture the Most Variability in Iron Status of Neonates Born to Teens Carrying Singletons and Women Carrying Multiples.

Abstract

BACKGROUND: The developing fetus requires adequate iron and produces its own hormones to regulate this process. Erythroferrone (ERFE) is a recently identified iron regulatory hormone, and normative data on ERFE concentrations and relations between iron status and other iron regulatory hormones at birth are needed. OBJECTIVES: The objective of this study was to characterize cord ERFE concentrations at birth and assess interrelations between ERFE, iron regulatory hormones, and iron status biomarkers in 2 cohorts of newborns at higher risk of neonatal anemia. METHODS: Umbilical cord ERFE concentrations were measured in extant serum samples collected from neonates born to women carrying multiples (age: 21-43 y; n = 127) or teens (age: 14-19 y; n = 164). Relations between cord blood ERFE and other markers of iron status or erythropoiesis in cord blood were assessed by linear regression and mediation analysis. RESULTS: Cord ERFE was detectable in all newborns delivered between 30 and 42 weeks of gestation, and mean concentration at birth was 0.73 ng/mL (95% CI: 0.63, 0.85 ng/mL). Cord ERFE was on average 0.25 ng/mL lower in newborns of black as opposed to white ancestry (P = 0.04). Cord ERFE was significantly associated with transferrin receptor (β: 1.17, P < 0.001), ferritin (β: -0.27, P < 0.01), and hemoglobin (Hb) (β: 0.04, P < 0.05). However, cord hepcidin and the hepcidin:erythropoietin (EPO) ratio captured the most variance in newborn iron and hematologic status (>25% of variance explained). CONCLUSIONS: Neonates born to teens and women carrying multiples were able to produce ERFE in response to neonatal cord iron status and erythropoietic demand. ERFE, however, did not capture significant variance in newborn iron or Hb concentrations. In these newborns, cord hepcidin and the hepcidin:EPO ratio explained the most variance in iron status indicators at birth.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View