Skip to main content
eScholarship
Open Access Publications from the University of California

Hydrologic Variability of the Cosumnes River Floodplain

  • Author(s): Booth, Eric
  • Mount, Jeff
  • Viers, Joshua H.
  • et al.
Creative Commons Attribution 4.0 International Public License
Abstract

Natural floodplain ecosystems are adapted to highly variable hydrologic regimes, which include periodic droughts, infrequent large floods, and relatively frequent periods of inundation. To more effectively manage water resources and maintain ecosystem services provided by floodplains – and associated aquatic, riparian, and wetland habitats – requires an understanding of seasonal and inter-annual hydrologic variability of floodplains. The Cosumnes River, the largest river on the west-slope Sierra Nevada mountains without a major dam, provides a pertinent test case to develop a systematic classification of hydrologic variability. By examining the dynamics of its relatively natural flow regime, and a 98-year streamflow record (1908 – 2005), we identified 12 potential flood types. We identified four duration thresholds, defined as short (S), medium (M), long (L), and very long (V). We then intersected the flood duration division by three magnitude classes, defined as small-medium (1), large (2), and very large (3). Of the 12 possible flood types created by this classification matrix, the Cosumnes River streamflow record populated 10 such classes. To assess the robustness of our classification, we employed discriminant analysis to test class fidelity based on independent measures of flood capability, such as start date. Lastly, we used hierarchical divisive clustering to classify water years by flood type composition resulting in 8 water year types. The results of this work highlight the significant seasonal and inter-annual variability in natural flood regimes in Central Valley rivers. The construction of water impoundment and flood control structures has significantly altered all aspects of the flood pulse. Restoring floodplain ecosystem services will require re-establishing key elements of these historic flood regimes in order to achieve regional restoration goals and objectives.

Main Content
Current View