Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Power and area minimization for multidimensional signal processing

Abstract

Sensitivity-based methodology is applied to optimization of performance, power and area across several levels of design abstraction for a complex wireless baseband signal processing algorithm. The design framework is based on a unified, block-based graphical description of the algorithm to avoid design re-entry in various phases of chip development. The use of architectural techniques for minimization of power and area for complex signal processing algorithms is demonstrated using this framework. As a proof of concept, an ASIC realization of the MIMO baseband signal processing for a multi-antenna WLAN is described. The chip implements a 4 x 4 adaptive singular value decomposition (SVD) algorithm with combined power and area minimization achieving a power efficiency of 2.1 GOPS/mW (12-bit add equivalent) in just 3.5 mm(2) in a standard 90 nm CMOS process. The computational throughput of 70 GOPS is implemented with 0.5 M cells at a 100 MHz clock and 385 mV supply, dissipating 34 mW of power. With optimal channel conditions the algorithm implemented can deliver up to 250 Mb/s over 16 sub-carriers.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View