Skip to main content
eScholarship
Open Access Publications from the University of California

AMPK promotes mitochondrial biogenesis and function by phosphorylating the epigenetic factors DNMT1, RBBP7, and HAT1.

  • Author(s): Marin, Traci L
  • Gongol, Brendan
  • Zhang, Fan
  • Martin, Marcy
  • Johnson, David A
  • Xiao, Han
  • Wang, Yinsheng
  • Subramaniam, Shankar
  • Chien, Shu
  • Shyy, John Y-J
  • et al.

Published Web Location

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5830108/
No data is associated with this publication.
Abstract

Adenosine monophosphate (AMP)-activated protein kinase (AMPK) acts as a master regulator of cellular energy homeostasis by directly phosphorylating metabolic enzymes and nutrient transporters and by indirectly promoting the transactivation of nuclear genes involved in mitochondrial biogenesis and function. We explored the mechanism of AMPK-mediated induction of gene expression. We identified AMPK consensus phosphorylation sequences in three proteins involved in nucleosome remodeling: DNA methyltransferase 1 (DNMT1), retinoblastoma binding protein 7 (RBBP7), and histone acetyltransferase 1 (HAT1). DNMT1 mediates DNA methylation that limits transcription factor access to promoters and is inhibited by RBBP7. Acetylation of histones by HAT1 creates a more relaxed chromatin-DNA structure that favors transcription. AMPK-mediated phosphorylation resulted in the activation of HAT1 and inhibition of DNMT1. For DNMT1, this inhibition was both a direct effect of phosphorylation and the result of increased interaction with RBBP7. In human umbilical vein cells, pharmacological AMPK activation or pulsatile shear stress triggered nucleosome remodeling and decreased cytosine methylation, leading to increased expression of nuclear genes encoding factors involved in mitochondrial biogenesis and function, such as peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), transcription factor A (Tfam), and uncoupling proteins 2 and 3 (UCP2 and UCP3). Similar effects were seen in the aortas of mice given pharmacological AMPK activators, and these effects required AMPK2α. These results enhance our understanding of AMPK-mediated mitochondrial gene expression through nucleosome remodeling.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item