Modeling normal mouse uterine contraction and placental perfusion with non-invasive longitudinal dynamic contrast enhancement MRI
Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Modeling normal mouse uterine contraction and placental perfusion with non-invasive longitudinal dynamic contrast enhancement MRI

Published Web Location

https://doi.org/10.1371/journal.pone.0303957
No data is associated with this publication.
Creative Commons 'BY' version 4.0 license
Abstract

Background: The placenta is a transient organ critical for fetal development. Disruptions of normal placental functions can impact health throughout an individual’s entire life. Although being recognized by the NIH Human Placenta Project as an important organ, the placenta remains understudied, partly because of a lack of non-invasive tools for longitudinally evaluation for key aspects of placental functionalities. Objective: Our goal is to create a non-invasive preclinical imaging pipeline that can longitudinally probe murine placental health in vivo. We use advanced imaging processing schemes to establish functional biomarkers for non-invasive longitudinal evaluation of placental development. Methodology: We implement dynamic contrast enhancement magnetic resonance imaging (DCE-MRI) and analysis pipeline to quantify uterine contraction and placental perfusion dynamics. We use optic flow and time-frequency analysis to quantify and characterize contraction-related placental motion. Our novel imaging and analysis pipeline uses subcutaneous administration of gadolinium for steepest slope-based perfusion evaluation, enabling non-invasive longitudinal monitoring. Results: We demonstrate that the placenta exhibits spatially asymmetric contractile motion that develops from E14.5 to E17.5. Additionally, we see that placental perfusion, perfusion delivery rate, and substrate delivery all increase from E14.5 to E17.5, with the High Perfusion Chamber (HPC) leading the placental changes that occur from E14.5 to E17.5 Discussion: We advance the placental perfusion chamber paradigm with a novel, physiologically based threshold model for chamber localization and demonstrate spatially varying placental chambers using multiple functional metrics that assess mouse placental development and remodeling throughout gestation. Conclusion: Our pipeline enables the non-invasive, longitudinal assessment of multiple placenta functions from a single imaging session. Our pipeline serves as a key toolbox for advancing research in mouse models of placental disease and disorder.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item