- Main
Internal Heat Transfer Coefficient Determination in a Packed Bed From the Transient Response Due to Solid Phase Induction Heating
Published Web Location
https://doi.org/10.1115/1.4005098Abstract
Non-intrusive measurements of the internal heat transfer coefficient in the core of a randomly packed bed of uniform spherical particles are made. Under steady, one-dimensional flow the spherical particles are subjected to a step change in volumetric heat generation rate via induction heating. The fluid temperature response is measured. The internal heat transfer coefficient is determined by comparing the results of a numerical simulation based on volume averaging theory (VAT) with the experimental results. The only information needed is the basic material and geometric properties, the flow rate, and the fluid temperature response data. The computational procedure alleviates the need for solid and fluid phase temperature measurements within the porous medium. The internal heat transfer coefficient is determined in the core of a packed bed, and expressed in terms of the Nusselt number, over a Reynolds number range of 20 - 500. The Nusselt number and Reynolds number are based on the VAT scale hydraulic diameter, . The results compare favorably to those of other researchers and are seen to be independent of particle diameter. The success of this method, in determining the internal heat transfer coefficient in the core of a randomly packed bed of uniform spheres, suggests that it can be used to determine the internal heat transfer coefficient in other porous media.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-