- Main
Tilted fluctuation electron microscopy
Published Web Location
https://doi.org/10.1063/5.0015532Abstract
Fluctuation electron microscopy (FEM) is a scanning nanodiffraction-based method that offers a unique approach to characterizing nanometer-scale medium-range order (MRO) in disordered materials. In addition to determining the degree of MRO, careful analysis of scanning nanodiffraction data can also be used to determine strain in thin film amorphous samples. We applied FEM to characterize the strain and MRO of magnetron sputtered amorphous tantalum (a-Ta) thin films over a range of tilt angles from 0 ° to 45 ° in order to measure any deviations between the in-plane and out-of-plane strain and MRO. We validate our approach using electron diffraction simulations of FEM experiments for a-Ta. We measure anisotropic strain in the simulated a-Ta diffraction patterns and find that the experimental a-Ta is isotropically strained within the accuracy of our method. Our approach provides a workflow for acquiring tilted scanning nanodiffraction data, determining the relative strain and ordering as a function of in- A nd out-of-plane directions, and removing any artifacts induced in FEM data due to strain. We also describe some limitations of the tilted FEM method when applied to thin films with very low strains.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-