Skip to main content
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Mapping the gene network landscape of Alzheimer's disease through integrating genomics and transcriptomics.


Integration of multi-omics data with molecular interaction networks enables elucidation of the pathophysiology of Alzheimer's disease (AD). Using the latest genome-wide association studies (GWAS) including proxy cases and the STRING interactome, we identified an AD network of 142 risk genes and 646 network-proximal genes, many of which were linked to synaptic functions annotated by mouse knockout data. The proximal genes were confirmed to be enriched in a replication GWAS of autopsy-documented cases. By integrating the AD gene network with transcriptomic data of AD and healthy temporal cortices, we identified 17 gene clusters of pathways, such as up-regulated complement activation and lipid metabolism, down-regulated cholinergic activity, and dysregulated RNA metabolism and proteostasis. The relationships among these pathways were further organized by a hierarchy of the AD network pinpointing major parent nodes in graph structure including endocytosis and immune reaction. Control analyses were performed using transcriptomics from cerebellum and a brain-specific interactome. Further integration with cell-specific RNA sequencing data demonstrated genes in our clusters of immunoregulation and complement activation were highly expressed in microglia.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View