Skip to main content
eScholarship
Open Access Publications from the University of California

Dopamine modulation of spike dynamics in bursting neurons

  • Author(s): Szücs, Attila
  • Abarbanel, HDI
  • Rabinovich, M I
  • Selverston, A I
  • et al.
Abstract

The pyloric network of the lobster stomatogastric ganglion is a prime example of an oscillatory neural circuit. In our previous study on the firing patterns of pyloric neurons we observed characteristic temporal structures termed 'interspike interval (ISI) signatures' which were found to depend on the synaptic connectivity of the network. Dopamine, a well-known modulator of the pyloric network, is known to affect inhibitory synapses so it might also tune the fine temporal structure of intraburst spikes, a phenomenon not previously investigated. In the recent work we study the DA modulation of ISI patterns of two identified pyloric neurons in normal conditions and after blocking their glutamatergic synaptic connections. Dopamine (10-50 mu m) strongly regularizes the firing of the lateral pyloric (LP) and pyloric dilator (PD) neurons by increasing the reliability of recurrent spike patterns. The most dramatic effect is observed in the LP, where precisely replicated spike multiplets appear in a normally 'noisy' neuron. The DA-induced regularization of intraburst spike patterns requires functional glutamatergic inputs to the LP neuron and this effect cannot be mimicked by simple intracellular depolarization. Inhibitory synaptic inputs arriving before the bursts are important factors in shaping the intraburst spike dynamics of both the PD and the LP neurons. Our data reveal a novel aspect of chemical neuromodulation in oscillatory neural networks. This effect sets in at concentrations lower than those affecting the overall burst pattern of the network. The sensitivity of intraburst spike dynamics to preceding synaptic inputs also suggests a novel method of temporal coding in neural bursters.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View