Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Scaling confirmation of the thermodynamic dislocation theory.

  • Author(s): Langer, JS;
  • Le, KC
  • et al.

Published Web Location

https://arxiv.org/pdf/2003.12146
No data is associated with this publication.
Abstract

The thermodynamic dislocation theory (TDT) is based on two highly unconventional assumptions: first, that driven systems containing large numbers of dislocations are subject to the second law of thermodynamics and second, that the controlling inverse timescale for these systems is the thermally activated rate at which entangled pairs of dislocations become unpinned from each other. Here, we show that these two assumptions predict a scaling relation for steady-state stress as a function of strain rate and that this relation is accurately obeyed over a wide range of experimental data for aluminum and copper. This scaling relation poses a stringent test for the validity of the TDT. The fact that the TDT passes this test means that a wide range of problems in solid mechanics, previously thought to be fundamentally intractable, can now be addressed with confidence.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item