
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Real-Time Monocular Large-scale Multicore Visual Odometry /

Permalink
https://escholarship.org/uc/item/74t252zw

Author
Song, Shiyu

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/74t252zw
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Real-Time Monocular Large-scale Multicore Visual Odometry

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Electrical Engineering (Computer Engineering)

by

Shiyu Song

Committee in charge:

Clark C. Guest, Chair
Serge J. Belongie
Manmohan Krishna Chandraker
Pankaj K. Das
David J. Kriegman
Truong Quang Nguyen

2014

Copyright

Shiyu Song, 2014

All rights reserved.

The dissertation of Shiyu Song is approved, and it is accept-

able in quality and form for publication on microfilm and

electronically:

Chair

University of California, San Diego

2014

iii

DEDICATION

To my parents, my wife and my daughter.

iv

EPIGRAPH

If you cannot explain it simply,

you don’t know it well enough.

—Albert Einstein

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . xi

Acknowledgements . xii

Vita . xiv

Abstract of the Dissertation . xv

Chapter 1 Introduction . 1
1.1 Motivation and Objectives 2
1.2 Challenges . 7
1.3 VO vs V-SLAM . 9
1.4 Contributions of the Dissertation 10
1.5 Organization of the Dissertation 11

Chapter 2 State of the Art . 13
2.1 Monocular Visual Odometry 13

2.1.1 Monocular Visual Odometry by Nister et al. 14
2.1.2 Libviso Mono by Geiger et al. 15
2.1.3 EKF MonoSLAM by Davison et al. 16
2.1.4 PTAM by Klein et al. 17

2.2 Scale Drift Correction . 20
2.2.1 Loop Closure . 20
2.2.2 Ground Plane Estimation 21
2.2.3 Others . 23

2.3 Stereo Visual Odometry . 24

Chapter 3 Preliminaries: Background . 26
3.1 Rigid-body Motion . 26

3.1.1 Representations of Rotation 27
3.1.2 Rigid-body Motion 32

3.2 Projective Camera . 33

vi

3.2.1 Perspective Camera without Distortion 33
3.2.2 Camera Distortion 34

3.3 Epipolar Geometry . 35
3.3.1 Calibrated Camera 36
3.3.2 Uncalibrated Camera 37
3.3.3 Summary . 38

3.4 Homography Geometry . 39
3.5 Bundle Adjustment . 40
3.6 Kalman Filter . 42

Chapter 4 Monocular Architectures . 45
4.1 Steady State Architecture 45

4.1.1 Pose Module . 46
4.1.2 Epipolar Update Module 47
4.1.3 Local Bundle Adjustment Module 50
4.1.4 Discussion . 51

4.2 Keyframe and Recovery Architectures 52
4.2.1 Keyframe . 52
4.2.2 Error-Correcting Mechanisms 55

4.3 Summary . 56

Chapter 5 Ground Plane Estimation . 58
5.1 Background . 58

5.1.1 Ground Plane Estimation 59
5.1.2 Data Fusion with Kalman Filter 60

5.2 Cues for Ground Plane Estimation 61
5.2.1 Plane-Guided Dense Stereo 61
5.2.2 Triangulated 3D Points 63
5.2.3 Object Detection Cues 64

5.3 Data-Driven Cue Combination 65
5.3.1 Training . 65
5.3.2 Testing . 71

Chapter 6 Results of Monocular Visual Odometry 74
6.1 Benchmark Monocular Visual Odometry on KITTI 75
6.2 Accuracy and Robustness of Monocular SFM 75
6.3 Accuracy of Ground Plane Estimation 78
6.4 Effectiveness of Ground Plane Estimation 82
6.5 Effectiveness of Our SFM Architecture 83
6.6 Real-time Performance . 84
6.7 Monocular SFM on an Additional Public Dataset 85

vii

Chapter 7 Monocular Object Localization 88
7.1 Introduction . 89
7.2 Related Work . 91
7.3 Background . 93
7.4 Joint Use of SFM and Detection for 3D Object Localization 94

7.4.1 3D Coordinate System 95
7.4.2 SFM Cues . 96
7.4.3 Object Cues . 97
7.4.4 Priors . 99
7.4.5 Joint Optimization 100
7.4.6 Initialization . 100

7.5 Details of SFM Cues . 101
7.5.1 Sparse Feature Tracking 101
7.5.2 Pose Estimation by Intensity Alignment 102
7.5.3 Dense Feature Tracking 103

7.6 Experiments . 105
7.6.1 Localization with Different Ground Plane Estimations 106
7.6.2 Effectiveness of Different Cues 107
7.6.3 Effectiveness of SFM Cues 111
7.6.4 Comparison with [CS10] 111

7.7 Discussion and Future Work 112

Chapter 8 Monocular Lane Detection . 113
8.1 System architecture . 113
8.2 bird-eye-view Transform 114
8.3 Line Extraction . 114
8.4 Lane Tracking and Temporal Integration 117
8.5 Line Segment Tracking . 120
8.6 Lane Adding in a Keyframe 121
8.7 Experiments and Results 123
8.8 Conclusions . 123

Chapter 9 Conclusions . 128
9.1 Discussion . 128
9.2 Future Directions . 129

Appendix A Appendix A . 131
A.1 Essential Matrix Estimation 131
A.2 Homography Matrix Estimation 132

Bibliography . 134

viii

LIST OF FIGURES

Figure 1.1: The concept of the visual odometry and its applications. 2
Figure 1.2: Input and output of our visual odometry system. 3
Figure 1.3: Google’s robotic cars have high-cost equipment with it. 4
Figure 1.4: Stereo vision and monocular vision from nature. 5
Figure 1.5: Performance of our monocular visual odometry system. 6
Figure 1.6: Sample frames in KITTI odometry dataset. 7

Figure 2.1: The drawback of a small baseline in fundamental matrix estimation. 16
Figure 2.2: Typical results output by EKF MonoSLAM. 17
Figure 2.3: The workflow of the mapping thread of PTAM. 19
Figure 2.4: Results before and after loop closure detection. 22
Figure 2.5: A frame from the KITTI odometry benchmark dataset. 22
Figure 2.6: Compute the absolute scale by special camera mounting. 23
Figure 2.7: Robotics that use the pipe radius to estimate the absolute scale. . . . 24

Figure 3.1: Rotation of a rigid body. 27
Figure 3.2: Proper Euler angles representing rotations about z, N, and Z axes. . 29
Figure 3.3: Tait-Bryan angles and rotations in a z− y− x sequence. 30
Figure 3.4: The epipolar geometry. 38
Figure 3.5: The homography geometry. 40
Figure 3.6: Sparse Jacobian matrix structure for a bundle adjustment. 41

Figure 4.1: System architecture for every steady state frame. 46
Figure 4.2: Mechanism of epipolar constrained search. 49
Figure 4.3: System architecture for keyframes. 53
Figure 4.4: System architecture for frame following a keyframe. 55
Figure 4.5: System architecture for a recovery frame. 56

Figure 5.1: Adaptive cue combination framework. 59
Figure 5.2: The geometry of ground plane estimation. 60
Figure 5.3: Homography mapping for plane-guided dense stereo. 62
Figure 5.4: The cost volumes for the dense stereo cue. 63
Figure 5.5: Examples of 1D Gaussian fits to estimate parameters. 67
Figure 5.6: Histograms of errors of the dense stereo cue. 68
Figure 5.7: Fitting a model for the dense stereo cue. 68
Figure 5.8: Histogram of height error of the 3D points cue. 69
Figure 5.9: Examples of mixture of Gaussians fits to detection scores. 70
Figure 5.10: Histogram of height error of the 3D points cue. 71
Figure 5.11: Adaptive cue combination framework with specific details. 73

Figure 6.1: Evaluation results on the KITTI benchmark. 76
Figure 6.2: Example of failure scenarios. 78

ix

Figure 6.3: Reconstructed trajectories from sequences in the KITTI training dataset 79
Figure 6.4: Reconstructed trajectories from sequences in the KITTI training dataset 80
Figure 6.5: Height error relative to ground truth over (left) Seq 2 and (right) Seq 5. 81
Figure 6.6: Error and robustness of our ground plane estimation. 82
Figure 6.7: The runtimes of our system for various types of frames. 85
Figure 6.8: The reconstructed trajectories for Seq 2 in Hague dataset. 86
Figure 6.9: The reconstructed trajectories for Seq 3 in Hague dataset. 87

Figure 7.1: Sample output of the 3D object localization framework. 90
Figure 7.2: Geometry of coordinate system definitions for object localization. . 94
Figure 7.3: Examples of mixture of Gaussians fits to detection scores. 99
Figure 7.4: Workflow for 3D points cue in 3D object localization framework. . 105
Figure 7.5: Comparison of 3D object localization errors of different methods. . 107
Figure 7.6: Benefit of SFM cues for 3D object localization. 110

Figure 8.1: Bird-eye-view transform of an image in KITTI dataset. 115
Figure 8.2: Gradient map of an image and its bird-eye-view transform. 116
Figure 8.3: Line segment extraction and bird-eye-view transform. 118
Figure 8.4: Lane triangulation and lane tracking. 119
Figure 8.5: Line segment tracking and new lane adding. 120
Figure 8.6: Line segment matching. 121
Figure 8.7: Line segment non-maximum suppression. 122
Figure 8.8: Lane detection results of KITTI Seq 0002. 124
Figure 8.9: Lane detection results of KITTI Seq 0003 125
Figure 8.10: Lane detection results of KITTI Seq 0004. 126

x

LIST OF TABLES

Table 4.1: Timings for various stages of the pose module. 47
Table 4.2: Epipolar update and local bundle timings. 51

Table 6.1: Comparison of rotation and translation errors. 77
Table 6.2: The effectiveness of our ground plane estimation. 83
Table 6.3: The effectiveness of our monocular SFM architecture. 84
Table 6.4: End-point errors in The Hague dataset. 86

Table 7.1: Comparison of various cues with bounding boxes from ground truth. 109
Table 7.2: Comparison of various cues with the tracking output of [GLW+14]. . 109
Table 7.3: Our 3D object localization can improve prior works. 111

xi

ACKNOWLEDGEMENTS

This dissertation is the product of the constant and kind help of my supervisor,

mentors, colleagues, friends and family.

First, I thank my supervisor Prof. Clark Guest for his unwavering encouragement,

guidance and support. He led me into this exciting field of computer vision. His open

research environment has always been great opportunities for me. My first vision project

under his advising during the first year of my PhD was a valuable experience. I was

impressed by the fantastic performance of the vision systems. It was a start and an

eye-opener.

Much of the work of this PhD was done during my internship with my mentor, Dr.

Manmohan Chandraker, at NEC Laboratories America. The breadth of his knowledge,

meticulous work attitude and stringent requirements for my intern work are the most

important elements making my work on monocular SFM successful. From start to finish,

he never fails to give me valuable guidance, support and help.

My time at San Diego Supercomputer Center with Dr. Yifeng and Dr. Jun Zhou

was a wonderful experience. It was a great opportunity for me get familiar with the

state-of-the-art distributed computing technologies, which will be certainly extremely

helpful in my future career.

I would like to thank my wife and my 1 year old daughter for their patience and

continual support during my time working on this dissertation. I owe them a particularly

large debt of the family time. It would be all too easy to take it for granted.

Finally, I would like to thank my parents. Their support for me to study abroad

is tremendous and wholehearted. Their pain at being oceans apart from me is only

surpassed by every little success I achieve now and in the future.

Parts of this dissertation are based on papers co-authored with my collaborators:

• Chapter 4 is based on “Parallel, real-time monocular visual odometry”, by Shiyu

Song, Manmohan Chandraker, Clark C. Guest as it appears in proceedings of

Robotics and Automation (ICRA), 2013 IEEE International Conference on, May

6-10 2013, Karlsruhe.

• Chapter 5 is based on “Robust Scale Estimation in Real-Time Monocular SFM

xii

for Autonomous Driving”, by Shiyu Song, Manmohan Chandraker, as it appears

in proceedings of Computer Vision and Pattern Recognition (CVPR), 2014 IEEE

International Conference on, June 24-27 2014, Columbus, Ohio.

• Chapter 4, 5 and 6 in part, have been submitted for publication, as it may appear in

“High Accuracy Monocular SFM and Scale Correction for Autonomous Driving”,

by Shiyu Song, Manmohan Chandraker, Clark C. Guest, in IEEE Transactions on

Pattern Analysis and Machine Intelligence.

• Chapter 7 has been submitted for publication, as it may appear in “High Accuracy

Monocular 3D Object Localization for Autonomous Driving”, by Shiyu Song,

Manmohan Chandraker, in proceedings of European Conference on Computer

Vision, Zurich, September 6-12, 2014.

xiii

VITA

2004-2008 B. S. in Electrical Engineering, Tsinghua University, China

2008-2010 M. S. in Electrical and Computer Engineering, University of Cali-
fornia, San Diego

2010-2014 Ph. D. in Electrical and Computer Engineering, University of
California, San Diego

PUBLICATIONS

Shiyu Song, Mohammed Billoo, Kamran Mahbobi and Clark Guest, “Multi-Sensor
Comparison and Data Fusion for Mapping Enclosed Spaces”, Journal of Electronic
Imaging, 21(2), 021104, May 10, 2012.

Shiyu Song, Manmohan Chandraker and Clark Guest, “Parallel, real-time monocular
visual odometry”, Robotics and Automation (ICRA), 2013 IEEE International Conference
on, pp 4698 - 4705, May 6-10 2013, Karlsruhe

Shiyu Song, Manmohan Chandraker, “Robust Scale Estimation in Real-Time Monocular
SFM for Autonomous Driving”, Computer Vision and Pattern Recognition (CVPR), 2014
IEEE International Conference on, June 24-27 2014, Columbus, Ohio

xiv

ABSTRACT OF THE DISSERTATION

Real-Time Monocular Large-scale Multicore Visual Odometry

by

Shiyu Song

Doctor of Philosophy in Electrical Engineering (Computer Engineering)

University of California, San Diego, 2014

Professor Clark C. Guest, Chair

We present a real-time, accurate, large-scale monocular visual odometry system

for real-world autonomous outdoor driving applications. This dissertation makes four

important contributions: First, we demonstrate robust monocular Structure from Motion

(SFM) with a series of architectural innovations including a novel epipolar searching

module in a parallel thread to replenish 3D points through a series of validation mecha-

nism, a novel combination of local and global bundle adjustment that ensures accuracy,

robustness and efficiency and so on (Chapter 4). These architectural innovations address

the challenge of robust multithreading even for scenes with large motions and rapidly

changing imagery. Our design is extensible for three or more parallel CPU threads. The

novel epipolar searching module, operating in parallel with other threads to generate new

3D points at every frame, together with the local bundle adjustment in the primary thread,

xv

significantly boost robustness and accuracy. Secondly, we demonstrate robust monocular

SFM with accuracy unmatched by prior state-of-the-art; over several kilometers, we

achieve performance similar to stereo that far exceeds other monocular architectures.

The key to this performance is scale drift correction using ground plane estimation that

combines cues from sparse features and dense stereo (Chapter 5). Our third contribution

is a data-driven mechanism for cue combination that learns models from training data

to relate observation covariances for each cue to error behavior of underlying variables.

During testing, this allows per-frame adaptation of observation covariances based on rel-

ative confidences inferred from visual data (Chapter 5). Finally, we present a framework

for highly accurate 3D localization of objects like cars (Chapter 7) and a lane detection

system (Chapter 8) based on our SFM poses and ground planes. Our accurate ground

plane and SFM poses easily benefit 3D localization frameworks and vision-based lane

detection for those applications, as demonstrated by our experiments. Our baseline SFM

system is optimized to output pose within 50 ms in the worst case, while average case

operation is over 30 fps. Evaluations are presented on the challenging KITTI dataset for

autonomous driving, where we achieve better rotation and translation accuracy than other

state-of-the-art systems.

xvi

Chapter 1

Introduction

The objective of this dissertation is to show how a robot can use images, which

convey only 2D information, in a robust manner to locate itself and surroundings in 3D

space. Effective use of video sensors for obstacle detection and navigation has been a goal

in ground vehicle robotics for many years. In this work, we present a real-time, monocular

vision-based system that relies on several innovations in multithreaded visual odometry

for autonomous driving. It achieves outstanding accuracy in sequences spanning several

kilometers of real-world environments.

Visual odometry (VO) is the process of determining the position and orientation

of a robot or vehicle by analyzing images from associated video cameras. Applica-

tion domains include robotics, wearable computing, augmented reality, and automotive

navigation. The term VO was first used in 2004 by Nister in his ground-breaking pa-

per [NNB04]. The problem of recovering camera poses and 3D scene structure from a

set of ordered or unordered images is also known as structure from motion (SFM) in

the computer vision community. Visual odometry is a special case of SFM, and SFM

is a more general term than visual odometry. Besides estimating the camera poses, VO

focuses on estimating camera poses sequentially and in real time. The three-dimensional

structure of the scene is typically generated by visual odometry, too, as by-product.

The structure of the scene is useful for applications such as obstacle detection, object

localization and 3D reconstruction. The visual odometry system can be a base for these

higher-level applications. Figure 1.1 demonstrates the concept of the visual odometry

and its applications.

1

2

Video
Stream

Camera Pose
Estimation

Sparse 3D
Points cloud

Autonomous
Navigation

Dense 3D
Reconstruction

Driver
Assistance

Visual Odometry Applications

Figure 1.1: The concept of the visual odometry and its applications. Visual odometry is
the process of determining the position and orientation of a robot or vehicle by analyzing
images from associated video cameras.

Image streams are acquired from video cameras. A visual odometry system

processes input image streams and produces a vehicle or robot localization map as

shown in Figure 1.2. How to extract necessary information from the 2D images, how

to compare and match them among neighboring frames and how to state-of-the-art

perspective geometry technologies to compute the 3D motion of the camera are the

fundamental problems that have been long addressed by the robotics and computer vision

communities.

1.1 Motivation and Objectives

Visual odometry is a problem that has gained immense traction in recent years.

It is a key component in robot navigation and real-world autonomous outdoor driving.

While a system based on a laser scanner has been able to generate a detailed 3D map

of its environment and drive itself by combining it with high-resolution maps of the

world [TMD+06], vision based systems are attractive for the automobile industry. The

reasons behind this are economical and technical. Google’s robotic cars have about

$150,000 in equipment including a $70,000 LIDAR (laser radar) system, the Velodyne

64-beam laser. It has four radars to avoid obstacles. A position estimation sensor is

mounted on the left rear wheel to determine the car’s position on the map. Besides these,

it also uses video cameras as the vision-based system does as shown in Fig 1.3. Clearly,

such high equipment prices would limit purchases to only the most luxurious vehicles.

3

Figure 1.2: Input and output of our visual odometry system. (Top) Input images from
video cameras. The colored points are estimated 3D points from our visual odometry
system. (Bottom) Vehicle motion estimated from our visual odometry system comparing
with ground truth.

On the other hand, costs of cameras have steadily declined in recent years, even for the

industrial cameras that are produced in lesser volume, support high frame rates and are

robust to extreme temperatures, weather and jitters. Technically, cameras are the most

suitable sensors for essential functions such as pedestrian, vehicle and lane detection in

an autonomous driving systems. The extremely rich information (shape, texture, color)

provided by vision sensors is indispensable in an autonomous driving system. Actually,

people also rely on vision sensors (human eyes) to drive a car. Thus, vision sensors

such as cameras are the first choice. An autonomous driving system that only relies on

cameras is the final goal of the automobile industry and visual odometry is an essential

component in such a system.

Traditionally, odometry is used to estimate change in position over time. The

traditional method of rotary encoders is to estimate the motion of the vehicle or robot

by measuring wheel rotations. While it is useful for many wheeled or tracked vehicles,

it cannot be applied to mobile robots with non-standard locomotion methods, such as

legged robots. Additionally, traditional odometry suffers from precision problems, since

wheels tend to slip and slide creating a non-uniform distance traveled as compared to

4

Figure 1.3: Google’s robotic cars have high-cost equipment with it. Google’s robotic
cars have about $150,000 in equipment including a $70,000 LIDAR (laser radar) system,
a Velodyne 64-beam laser. It has four radars to avoid obstacles. A position estimation
sensor is mounted on the left rear wheel to determine the car’s position on the map.
Besides these, it also equips video cameras. By contrast, our monocular visual odometry
system only requires video images from a single camera as input.

the wheel rotations. The error is compounded when the vehicle operates on non-smooth

surfaces. Odometry readings become increasingly unreliable over time as these errors

accumulate. Visual odometry allows for enhanced navigational accuracy in robots or

vehicles using any type of locomotion on any surface. In ground vehicle applications,

visual odometry can provide an alternative or compliment with respect to wheel odometry

since it is not affected by wheel slip in uneven terrain or other adverse conditions. It has

been demonstrated that visual odometry provides more accurate estimates than wheel

odometry [SF11]. This capability promotes visual odometry as a good supplement to

systems such as the global positioning system (GPS), inertial measurement units (IMU),

and laser odometry. In indoor environment where GPS is not available, visual odometry

has even greater application and advantage.

Traditional visual odometry adopts stereo camera solutions. While stereo SFM

systems routinely achieve high accuracy and real-time performance, the challenge remains

daunting for monocular ones. Yet, monocular systems are attractive for the automobile

industry since they are cheaper and the calibration effort is lower. The accuracy of the

5

Figure 1.4: Stereo vision and monocular vision from nature. (Top row) Lions’ and cats’
eyes face forward and create binocular vision (stereo vision) with a large overlap area in
the field of vision for both eyes. (Bottom row) Rabbits and pigeons’ eyes face sideways
and create monocular vision with a small overlap between the field of vision for both
eyes.

inter-camera stereo calibration has direct impact on the accuracy of the visual odometry

output. Accuracy is dependent on stereo calibration which can be hard to ensure if the

cameras are separated significantly. Much more effort is needed to maintain a calibrated

constant baseline between the pair of the cameras than maintaining a single calibrated

camera. Stereo calibration is not needed for monocular visual odometry systems. Besides

the application for autonomous driving, visual odometry is also an important technology

for robot navigation. Monocular visual odometry systems are inherently good for small

object robotics by saving the space of the baseline between the pair of cameras in stereo

vision systems. Finally, interfacing and synchronization are more difficult for stereo

cameras compared to a monocular camera. Nature also adopts stereo or monocular vision

system in different situations as shown in Figure 1.4.

In this work, we present a real-time, monocular vision-based system that relies

on several innovations in multithreaded visual odometry for autonomous driving. It

achieves outstanding accuracy in sequences spanning several kilometers of real-world

environments. We present results on the public challenging KITTI dataset, which is

6

 0

 100

 200

 300

 400

 500

 600

-300 -200 -100 0 100 200 300

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

 0

 100

 200

 300

 400

 500

 600

 700

-400 -300 -200 -100 0 100 200 300

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

 0

 100

 200

 300

 400

 500

 600

-300 -200 -100 0 100 200 300

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

-150

-100

-50

 0

 50

 100

 150

 0 50 100 150 200 250 300 350

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

-300

-200

-100

 0

 100

 200

-100 0 100 200 300 400
z

[m
]

x [m]

Ground Truth
Visual Odometry
Sequence Start

-150

-100

-50

 0

 50

 100

 150

 0 50 100 150 200 250 300

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

(a) Our System (b) VISO2-Mono [GZS11] (c) VISO2-Stereo [GZS11]

Figure 1.5: Performance of our monocular visual odometry system. (Top row) (a) Our
monocular visual odometry yields camera trajectories close to the ground truth over sev-
eral kilometers of real-world driving. (b) Our monocular system significantly outperforms
prior works that also use the ground plane for scale correction. (c) Our performance
is comparable to stereo-based visual SFM. (Bottom row) Scale drift correction using a
novel, adaptive ground plane estimation allows such accuracy and robustness (Chapter
5). The green line is the horizon from the estimated ground plane.

collected specifically for autonomous driving applications [GLU12], and other datasets.

In KITTI dataset, imagery is collected at only 10Hz and vehicle speeds can be high, which

results in large inter-frame motion of corresponding features. In extensive experiments

on the challenging KITTI dataset, we achieve a rotation accuracy of 0.0057 degrees

per frame, outperforming several state-of-the-art stereo systems. Our translation error

is 2.53%, which is also comparable to stereo and unmatched by other state-of-the-art

monocular systems. Sample results are shown in Fig 1.5.

7

(a) Frame 000037 in Sequence 0018

(b) Frame 000038 in Sequence 0018

Figure 1.6: Sample frames in KITTI odometry dataset. Two neighboring frames Frame
000037 and 000038 in Sequence 0018 of KITTI Tracking Dataset. The vehicle speed
is high and large motions may occur between consecutive frames. This places severe
demands on an autonomous driving visual odometry system, necessitating extensive
validation and refinement mechanisms that conventional systems do not require.

1.2 Challenges

The challenges of monocular visual odometry for autonomous driving are both

fundamental and practical. For instance, it has been observed empirically and theoretically

that forward motion is a “high error” situation for visual odometry [Oli05]. By contrast,

stereo visual odometry systems typically have a wide baseline to overcome this issue.

Vehicle speeds in outdoor environments can be high, so even with high frame

rate cameras, large motions may occur between consecutive frames, as shown in Figure

1.6. This places severe demands on an autonomous driving visual odometry system,

necessitating extensive validation and refinement mechanisms that conventional systems

do not require. Our system makes judicious use of a novel multithreaded design to

ensure that location estimates (and the underlying map variables) become available only

after extensive validation with long-range constraints and thorough optimization, such as

bundle adjustments [TMHF00], but without undue delay.

The timing requirements for visual odometry in autonomous driving are equally

8

stringent – a pose must be output at every frame in a fixed amount of time. Thus,

our system is optimized for worst-case timing scenarios, rather than the average-case

optimization for most traditional systems. Traditional systems may produce a spike

in delays when special frames are processed, or some operations are performed. For

instance, [CLFP10] has a delay when system detects a loop in the scene when the loop

closure is performed. In particular, our multithreaded system produces pose outputs in at

most 50 ms, regardless of the type of the frame added or the operation performed. The

average frame rate of our system is much higher, at above 30 fps (33 ms delay only).

An important aspect of our system design is its judicious use of multithreading.

Visual odometry is an inherently sequential operation. This is especially true for outdoor

autonomous driving, as opposed to indoor or desktop applications where the possibility

of repeatedly viewing the same scene structures is high. For our application, with rapidly

changing features in the visible field of view, optimization such as bundle adjustment

must be per-frame, while highly accurate new 3D points must be added to the system with

no luxury of off-cycles or revisited regions of the map to perform delayed refinements.

Thus, designing a multithreaded system requires achieving a delicate balance

between accuracy and latency. A key emphasis of this work is to illustrate that besides the

obvious speed advantages, well-designed multithreading can also greatly contribute to the

accuracy and robustness of the system. The high redundancy epipolar search mechanism

(Sec. 4.1 in Chapter 4), novel keyframe architectures that allow updating trackable 3D

points with reliable long tracks (Sec. 4.2 in Chapter 4) and thread safe modules that allow

online bundle adjustment are some of the innovations that allow our system to meet the

competing demands of speed, accuracy and robustness. As an example, consider our

epipolar constrained search. A single-thread version of a system that relies on 2D-3D

correspondences might update its stable point set by performing an epipolar search in

the frame preceding a keyframe. However, the support for the 3D points introduced by

this mechanism is limited to just the triplet used for circular matching and triangulation.

By moving the epipolar search to a separate thread and performing circular matching

at every frame, we may supply 3D points with tracks of length up to the distance from

the preceding keyframe. The set of long tracks provided by the epipolar thread in our

multithread system is far more likely to be free of outliers. Our multithread architecture

9

allows elegant extension to as many threads as desired. The strength of our results

demonstrates the necessity of such a design to robustly and efficiently meet the challenge

of monocular autonomous driving.

Monocular vision-based frameworks are attractive due to lower cost and cali-

bration requirements. However, the lack of a fixed stereo baseline leads to inevitable

scale drift, which is a primary bottleneck that has prevented monocular visual SFM from

attaining accuracy comparable to stereo. To counter scale drift, prior knowledge is used,

which is commonly the height of the camera above the ground plane. Thus, a robust

and accurate estimation of the ground plane is crucial to achieve good performance in

monocular scene understanding. However, in real-world autonomous driving, the ground

corresponds to a rapidly moving, low-textured road surface, which makes its estimation

from image data challenging.

We overcome this challenge with two innovations in Chapter 5: first, we incorpo-

rate cues from multiple methods of ground plane estimation and second, we combine

them in a principled framework that accounts for their per-frame relative confidences,

using models learned from extensive training data. While prior works have used sparse

feature matching for ground plane estimation [GZS11, SS08, SCG13], it is demonstrably

inadequate in practice and must be augmented by other cues such as the plane-guided

dense stereo of Sec. 5.2 in Chapter 5. To combine cues, Sec. 5.3 in Chapter 5 proposes a

Kalman filter framework that adapts the fusion observation covariances at every frame to

reflect the relative uncertainty of each cue. This is achieved by a training procedure on

over 20000 frames from the KITTI dataset, whereby models are learned that relate the

observation covariance for each cue to the error behaviors of its underlying variables. To

the best of our knowledge, such adaptive estimation of observation covariances for cue

combination is novel.

1.3 VO vs V-SLAM

Visual odometry (VO) and Visual Simultaneous localization and mapping (V-

SLAM) are two systems that have many similar aspects but focus on different applications.

We discuss the relationship of VO and V-SLAM in this section.

10

The goal of a VO system is to recover the camera trajectory incrementally.

Conversely, a SLAM system seeks to obtain a global, consistent map of the environment.

A trajectory of the camera is inevitably estimated during this procedure. A common

technology used in SLAM systems is loop closure. When a loop closure is detected, this

information is used to refine both the map and the camera trajectory. A V-SLAM system

is usually more complex and computationally expensive, because loop closure has to be

detected and a global optimization (called global bundle adjustment) has to be performed

to obtain a consistent map. On the other hand, VO systems care about local consistency

of the trajectory, and a local optimization (called windowed bundle adjustment or local

bundle adjustment) is used to obtain a more accurate local trajectory.

Most V-SLAM systems are designed to work in small, indoor workspaces. How-

ever, VO systems can usually work in large-scale environments, but scale drift is the most

significant obstacle for monocular visual odometry systems to achieve good accuracy

as discussed in Section 1.2. Our system is a VO system. We focus on local trajectory

accuracy more than global. We don’t detect things like loop closure and don’t perform

a huge global bundle adjustment, either. However, this doesn’t imply that our system’s

accuracy is worse than state-of-the-art V-SLAM systems in our application, since loop

closure rarely happens in practical autonomous driving. For an image sequence without

loop, loop closure and global bundle adjustment lose their foundation to improve the

accuracy globally. In Chapter 6, we show that our system performs better than one of the

state-of-the-art V-SLAM systems, EKFMonoSLAM [CGDM09].

1.4 Contributions of the Dissertation

Let us summarize our discussions so far. The main contributions of this disserta-

tion are:

1. Real-time Parallel Monocular Visual Odometry: Our first set of contributions

is a real-time parallel monocular visual odometry system that consists of several

technical and methodological innovations to address the problem of monocular

visual odometry:

11

(a) Highly accurate, robust, scale-corrected and real-time monocular SFM with

performance comparable to stereo, including several architectural innovations

to address the challenge of robust multithreading even for scenes with large

motions and rapidly changing imagery.

(b) A novel data-driven framework that combines multiple cues for ground plane

estimation using learned models to adaptively weight per-frame observation

covariances.

(c) Scale drift correction by adaptively combining multiple cues for ground plane

estimation using learned models to correctly weight per-frame observation

covariances.

2. A monocular 3D object localization framework: Our next set of contributions

is a 3D object localization framework based on the monocular visual odometry

system. We demonstrate that a significant improvement in ground plane estimation

leads to excellent performance in applications such as monocular visual odometry

and 3D object localization.

(a) We introduce novel cue from object detection to improve ground plane esti-

mation for 3D object localization, including novel use of detection cues for

ground estimation, which boosts 3D object localization accuracy.

(b) A joint optimization framework for 3D object localization that combines SFM

cues such as 3D points and ground plane, with object cues like bounding

boxes and detection scores, to achieve accuracy in both near and far fields.

(c) Incorporation of raw detection scores to allow 3D bounding boxes to “undo"

tracking errors, that is, achieve consistency with both 3D geometry as well as

detection scores.

1.5 Organization of the Dissertation

The structure of the rest of this thesis is as follows. In Chapter 2 we introduce

the state-of-the-art prior works, including brief comparison with them. In Chapter 3, we

12

introduce the notation, geometrical models and other preliminaries that we will build

the theory of the rest of the thesis on. In Chapters 4, we concentrate on the system

architecture of our real-time monocular SFM system, and describe each component of

the system in details. In Chapter 5, we present our novel ground plane estimation. The

ground plane estimation is an important contribution of this thesis. Not only it helps the

SFM system to correct the scale drift, but also it benefits the monocular object localization

and the lane detection. In Chapter 6, we present the performance of our SFM system, and

demonstrate that it is comparable to stereo systems on real-world driving sequences. In

Chapter 7, we present a 3D localization framework based on our ground plane estimation

and other cues. The benefits of having these cues are also demonstrated by experiments.

In Chapter 8, we present a lane detection system that incorporates both the SFM poses

and the ground plane estimation results, in contrast to traditional pure image-based works.

Finally, we conclude in Chapter 9 with summaries and some thoughts on potential future

work.

Chapter 2

State of the Art

The original contribution addressing the problem of the structure from motion

(SFM) can be dated to 1988 by Harris [HP88] and 1987 by Longuet-Higgins [LH87].

The early work of estimating a vehicle’s ego-motion with a vision based system starts in

1980s. [Mor80] [MS87] [OMSM00] were done for the NASA Mars exploration program

to provide all-terrain rovers that can measure their motion in uneven and rough terrains.

In these works, they use stereo vision or a single sliding camera (It can be considered

as stereo because the robot moved in a stop-and-go fashion and the baseline length is

known.). The alternative to stereo vision is to use a single camera in a monocular vision

system. The challenge of the monocular visual odometry system is that motion can only

be recovered up to a scale factor. The absolute scale then has to be determined from other

sources.

Over the years, monocular and stereo visual odometry systems have progressed as

two almost independent lines of research, so we separately introduce their development

in the following sections. Some sections in this chapter are based on the survey works

[SF11, FS12, DWB06, BDW06].

2.1 Monocular Visual Odometry

The challenge of the monocular visual odometry is that one can not extract depth

information from a single frame. Since the absolute scale is unknown, more complicated

mechanisms are required to maintain the computed 3D structure. Therefore when a new

13

14

image arrives, the relative scale and the camera motion between the previous image and

the new image has to be accurately estimated. Unfortunately, during this procedure, scale

drift happens inevitably.

In this section, we give a brief review of the existing monocular visual odometry

systems. The limitation and the drawbacks of these prior systems are discussed. In

constrast to prior real-time SLAM systems, our system architecture is intricately designed

to meet the challenge of accurate and efficient monocular autonomous driving. In

Chapter 4, we will discuss how our design is fundamentally different, better suited to the

application, easily extensible, and more accurate.

2.1.1 Monocular Visual Odometry by Nister et al.

The first real-time, large-scale visual odometry system with a single camera was

developed by Nister et al in his breakthrough work [NNB04]. This work is known not

only for the achievement of the first real-time visual odometry system, but also for a

series of mechanism innovations.

First, it’s a feature-based method, but instead of tracking features among frames

such as Kanade–Lucas–Tomasi (KLT) feature tracker [LK81], it detects features (Harris

corners [HS88] [ST94a]) independently in frames and only allows matches between them.

This improves tracking quality by avoiding tracking drift, which is a common issue in

the traditional approach.

Second, during initialization, a five-point algorithm [Nis04] together with RAN-

dom SAmple Consensus (RANSAC) [FB81a] is used to compute the initial relative

motion between two frames. In contrast to the five-point algorithm, traditionally an

eight-point algorithm [LH87] [Har97] has been used to solve the same problem. The

five-point algorithm has significant advantages over the traditional eight-point algorithm,

for example in sideways motions. After this work, the five-point algorithm became

a standard approach for the initialization stage in a monocular VO system [NNB06]

[TPD08] [MLD+06] [SFS09] [PMP11]. After initialization, the system triangulates the

observed feature tracks into 3D points.

Third, they used a pose estimation algorithm based on 3D-to-2D matches. This

problem is known as a Perspective-n-Point (PnP) problem in the field. In particular, they

15

used a 3-point algorithm in [HLON91] together with RANSAC to solve it.

Finally, as mentioned before, they incorporated RANSAC [FB81a] outlier rejec-

tion scheme into the framework, so that the quality of the 3D points and 2D matches

can be well maintained. It provided an opportunity for future work, such as PTAM

[DRMS07, KM07, KM08] and also our approach to incorporate the important key-frame

mechanism, which enables use of local and global bundle adjustment, since bundle

adjustment is known to be sensitive to outliers [TMHF00].

Our visual odometry system is developed based on all these novel designs from

Nister’s work. Standing on the shoulders of giants, we have introduced many mechanism

innovations, such as using a more powerful feature extraction (ORB [RRKB11a]) during

initialization, replacing the 3-point algorithm with the more efficient and robust EPnP al-

gorithm [LMNF09] to solve the PnP problem, a complete new multithreading framework

including a novel epipolar searching thread to replenish high quality 3D points and 2D

matches, and other innovations. We will discuss these in Chapter 4. Additionally, neither

the scale drift nor the scale initialization issue is discussed in Nister’s work.

2.1.2 Libviso Mono by Geiger et al.

Libviso Mono is a monocular visual odometry system proposed by Geiger et

al [GZS11] which has a completely different framework than Nister’s.

It relies on matching and computing relative pose between every consecutive pair

of frames through a fundamental matrix estimation using an eight-point algorithm [LH87]

[Har97]. Fundamental matrix estimation algorithms, such as eight-point or five-point

algorithms, have the limitation that the absolute scale can’t be recovered, as we discussed

in the section 1.2 of Chapter 1. Similar to our approach, Libviso Mono estimates a locally

planar ground to solve the absolute scale issue.

This simple approach has the advantage of robustness. Because it is based on

two-view estimation, ideally the system never breaks down as long as there are enough

good features that can be extracted in the scene. But there are also several drawbacks of

such an approach. First, it is known that two-view estimation leads to high translational

errors in the case of narrow baseline forward motion [Oli05]. This leads to high error

when the vehicle’s speed is low, as shown in Figure 2.1. Second, there is higher drift

16

Figure 2.1: The drawback of a small baseline in fundamental matrix estimation. A small
baseline between two frames in fundamental matrix estimation leads to a large error.
In contrast, a large baseline can improve the accuracy. It’s the key difference between
our approach (also Nister’s) and Libviso Mono. Our approach is carefully designed to
introduce long-range constraints while maintaining efficiency and relies on 3D-2D pose
estimation rather than narrow baseline fundamental matrix estimation.

since distant constraints from long tracks are not used. Using local tracks can improve the

local consistency of the computed trajectory. In conclusion, Libviso Mono is a baseline

monocular visual odometry method and its accuracy is low due to its architecture defects.

In contrast, our approach is carefully designed to introduce long-range constraints

while maintaining efficiency and relies on 3D-2D pose estimation rather than narrow

baseline fundamental matrix estimation. We also introduce a novel cue combination

framework for ground plane estimation that significantly boosts the accuracy of our

system.

2.1.3 EKF MonoSLAM by Davison et al.

As we introduced in Section 1.3 of Chapter 1, in contrast to a VO system, another

category is the visual simultaneous localization and mapping (V-SLAM) system, which

focuses more on map building. The camera trajectory is estimated during this procedure.

The first real-time monocular V-SLAM system is MonoSLAM developed by Andrew

Davison in his breakthrough work [Dav03]. This work built on earlier but more limited

filtering-based approaches such as the work of Chiuso et al. [CFJS00]. It successfully

adapted the extended Kalman filter (EKF) approach with full-covariance to the monocular

17

Figure 2.2: Typical results output by EKF MonoSLAM. (Left) Detected feature patches
are in red rectangles. Feature searching regions are in red circles. (Right) The map built
by the system. Feature location uncertainties are represented with various sizes of circles.
Red features are currently being tracked. Yellow features are currently not selected for
measurement.

SLAM field. The advantage of Davison’s work was to observe repeatable localizations

in a fixed amount of time. The camera pose and localizations of a sparse set of feature

points are estimated by maintaining full covariance over the complete state vector. The

covariance matrix is updated during this procedure so that the map is refined. Typical

results output by EKF MonoSLAM are shown in Figure 2.2.

Later, Handa et al. [HCSD10] improved Davison’s by an active matching tech-

nique based on a probabilistic framework. Civera et al. [CGDM09, CGDM10] proposed

to integrate a 1-point RANSAC within the Kalman filter that uses the available prior

probabilistic information from the EKF in the RANSAC model hypothesize stage. This

allows the minimal sample size to be reduced to one, resulting in large computational

savings without the loss of discriminative power.

The limitation of the EKF MonoSLAM is discussed in the next section together

with the approach of PTAM. In Chapter 6, we will show some comparison results between

our system and Civera’s EKFMonoSLAM.

2.1.4 PTAM by Klein et al.

Recently, a few purely vision-based monocular systems have achieved good

localization accuracy, but mainly for smaller indoor environments [DRMS07, KM07,

KM08]. PTAM is an elegant two-thread architecture separating the tracking and mapping

18

aspects of monocular visual SLAM that has been proposed by Klein and Murray [KM07].

It proposes to include feature measurements only from wide-baseline key-frames that are

selected heuristically based on the number of frames observed and the change that has

happened in the scene. The key-frames provide the 2D correspondences of the 3D points

to reside on. It enables the use of global bundle adjustment to refine the map and also

the poses. PTAM also introduced a multi-threading architecture including two threads.

One thread runs local and global bundle adjustment and refines the map continuously,

as shown in Figure 2.3. Another thread computes the camera motion accurately by

projecting hundred of features in the map to the current image and matching them,

similar to Nister’s work. A PnP solver is also used in this step. Finally, PTAM spends

more time on robust tracking, locating to sub-pixel accuracy hundreds of features in

different image pyramids. The sheer number of features significantly improves the

robustness and mapping accuracy.

Lately, Strasdat et al. [SMD10a] presented a new framework for large-scale V-

SLAM. It takes advantage of the key-frame architecture from PTAM and also introduces

loop closure to address the scale drift issue. We’ll discuss loop closure in Section 2.2.1.

Weiss et al. [AAWS11, WSS11] ported the original PTAM to Robot Operating System

(ROS) platform [QCG+09], and introduced some mechanism innovations to reduce the

VSLAM framework to a visual odometry framework. For example, the extension of

PTAM by Weiss has a maximum number of key-frames retained in the map to make it

more applicable as a large-scale visual odometry system. Weiss also improves the feature

handling in PTAM to robustly handle self-similarity in the environment, e.g. the asphalt

in urban areas or the grass in rural areas.

We note that the intuitions behind Klein’s (or Nister’s) and Davison’s approaches

are completely different. Both of them have proven successful, but they solve the

problem in different ways. Filtering methods, such as Davison’s, marginalize out past

poses and summarize the information gained over time with a probability distribution.

Key-frame methods retain the optimization approach of global bundle adjustment, but

computationally must select only a small number of past frames to process. A intensive

comparison and analysis between these two different approaches are conducted by

Strasdat et al. [SMD10b, SMD12]. In terms of map building accuracy, they concluded

19

Figure 2.3: The workflow of the mapping thread of PTAM. After initialization, the
thread runs local and global bundle adjustment. When a key-frame is detected, the thread
adds new features into the map. In contrast, our system proposes a more elegant epipolar
searching thread to replace the new feature adding step in the map thread. Our system
uses this novel multi-threaded design to ensure that feature matches (and the underlying
map measurements) become available only after extensive validation with long-range
constraints, but without delay.

20

that it is computationally more efficient to increase the number of tracked features than

the number of frames. This conclusion confirms that the bundle adjustment approach

(Klein’s) is more efficient than the filtering one, therefore bundle adjustment is adopted

in our design.

However, PTAM is a SLAM system, so it focuses on building an accurate map for

small workspace environments and relies extensively on repeatedly observing a small set

of 3D points. Even for the extension of the PTAM from Weiss that targets the application

of an autonomous helicopter in the outdoor environment, the workspace is also a small

environment essentially, because the helicopter can repeatedly observe 3D points in the

world in a top-down view. These systems do not scale well to large outdoor environments,

such as driving situations where scene points rapidly disappear from the field of view.

The latter is an important restriction that motivates our improved architecture for the

application of large-scale visual odometry.

2.2 Scale Drift Correction

Scale drift is a crucial challenge that prevents monocular autonomous driving

from emulating the performance of stereo. Unlike stereo, the lack of a fixed baseline

leads to scale drift, which is the main bottleneck that has prevented monocular SFM

from attaining accuracy comparable to stereo. Robust and accurate monocular SFM that

effectively counters scale drift in real-world road environments has significant potential

benefits for mass-produced autonomous driving systems. In this section, we discuss the

state-of-the-art scale drift correction technology in monocular visual odometry systems.

2.2.1 Loop Closure

The most common approach to refine the map and counter scale drift is loop

closure. Events such as observing a landmark again after not seeing it for a long time

or coming back to a previously mapped area are called loop closure [BDW06]. Strasdat

et al. [SMD10a] propose a large-scale monocular system that handles scale drift with

loop closure. Loop closure is not only valuable for monocular VO or SLAM systems, but

also important for stereo systems, since the incremental error during pose estimation in

21

SLAM systems can’t be neglected.

Usually, loop closure can be detected by evaluating visual similarity between

current and past camera images. Ulrich [UN00] and Jogan [JL00] use global image

descriptors to evaluate visual similarity. However, it’s more popular to detect loops

using local image descriptors. One of the most successful methods is based on visual

words [NCH06] [CN08] [FEN07] [FWmFP08] [AFDM08]. The advantage of the visual

word-based approach is its efficiency. It is extremely fast to evaluate visual similarities

between large sets of images using a inverted index [AFDM08] or a visual vocabulary

tree [NS06]. After loop detection, a pose graph can be constructed. In the pose graph, the

camera poses are the nodes and the rigid-body transformations between camera poses are

the edges between nodes. The rigid-body transformation estimated from the detected loop

can be added to the pose graph as an additional loop constraint, so that the map can be

updated [OLT06] [GKS+10]. This can efficiently correct translational and rotational drift,

but it can not deal with scale drift for the monocular system. Strasdat et al. [SMD10a]

propose a optimization based on seven degrees of freedom (DoF) constraints instead of

the traditional six DoF to solve this issue. A result is shown in Figure 2.4.

Although loop closure is common in existing large-scale SLAM systems, it is

not applicable in autonomous driving. First, autonomous driving requires real-time scale

correction on a per-frame basis. A delayed scale correction is not acceptable. Second, the

purpose of autonomous driving is to transport passengers from the starting point to the

destination. Loop closure rarely occurs in practice. Given the above, we adopt another

approach, ground plane estimation, to allow our monocular system to correct the scale.

2.2.2 Ground Plane Estimation

As with ours, other systems handle scale drift by estimating camera height above

the ground plane [SS08, GZS11, KRC+11]. However, they usually rely on triangulation

or homography decomposition from feature matches that are noisy for low-textured

road surfaces, or do not provide unified frameworks for including multiple cues. An

example image is shown in Figure 2.5. As we can see, the ground plane often refers

to a low-textured road surface, which renders sole reliance on such feature matches

impractical.

22

Figure 2.4: Results before and after loop closure detection. (a) The trajectory and the
map computed without loop closure. (b) A traditional graph optimization closes the
loop but leaves the scale drift unchanged. (c) The result generated by performing seven
DoF graph optimization proposed by Strasdat et al. [SMD10a]. (d) Aerial photo of the
trajectory.

Figure 2.5: A frame from the KITTI odometry benchmark dataset. As we can see, the
ground plane often refers to a low-textured road surface, which renders sole reliance on
such feature matches impractical.

23

Figure 2.6: Compute the absolute scale by special mounting camera. (Left) If the
camera is located on the vehicle’s non-steering axle, the rotation and translation of both
the camera and the car are exactly the same. The motion estimation of the vehicle is
simplified in this case. (Right) A camera is mounted with an offset to the axle, so rotation
and translation of camera and car are different. This special case can be used to compute
the absolute scale from a single camera.

In contrast, we achieve far superior results by combining cues from both sparse

features and plane-guided dense stereo, in a data-driven framework whose observation

covariances are weighted by instantaneous visual data. In contrast to most of the above

systems, we present strong monocular SLAM results on publicly available real-world driv-

ing benchmarks over several kilometers [GLU12, DG09] and report accurate localization

performance relative to ground truth in Chapter 6.

2.2.3 Others

There are also methods used to counter scale drift that have special designed

hardware or prior knowledge of the environment, such as nonholonomic constraints for

wheeled robots [SFPS09] or the geometry of circular pipes [HARB11].

In Scaramuzza’s work [SFPS09], a camera is mounted with an offset to the axle,

so rotation and translation of camera and car are different. This special case can be used

to compute the absolute scale from a single camera, as shown in Figure 2.6.

Hansen’s work [HARB11] enforces all world points observed in the images to lie

on the interior surface of a straight cylindrical pipe with constant radius. The radius of

the pipe provides the absolute scale for the visual odometry system, as shown in Figure

2.7.

24

Figure 2.7: Robotics that use the pipe radius to estimate the absolute scale. (Left) The
two pipes and robotic platforms. (Right) Example images from camera. The radius of
the pipe provides the absolute scale of the visual odometry system.

2.3 Stereo Visual Odometry

Stereo-based SLAM systems now routinely achieve real-time performance in

both indoor [CLFP10] and outdoor environments [NNB04], or even extraterrestrial

terrains [OMSM01]. Parallel implementations for visual stereo SLAM that harness the

power of GPUs have been demonstrated to achieve frame rates exceeding 30 fps in indoor

environments [CLFP10].

A more complete presentation of stereo visual odometry can be found in Scara-

muzza’s visual odometry tutorial [SF11]. Our work focuses on the monocular visual

odometry. We summarize the core part here for completion.

Building upon Moravec’s [Mor80] work, Matthies [MS87] replaced the sliding

camera with stereo cameras and used Moravec’s detection and tracking of corners.

Matthies took advantage of the error covariance matrix of the triangulated features

and incorporated it into the motion estimation step. They reached superior results for a

planetary rover with 2% relative error on a 5.5m path. Olson et al [OMSM00] [OMSM03]

25

later extended the work by integrating an absolute orientation sensor (e.g., compass or

omnidirectional camera) and and using the Forstner corner detector, which is significantly

faster to compute than Moravec’s operator. When the absolute orientation sensor is

incorporated, the error growth can be reduced to a linear function of the distance traveled.

This led them to a relative error of 1.2% on a 20m path.

Lacroix et al. [LMCG99] used dense stereo to replace the Forstner detector and

then selected the candidate key points by analyzing the correlation function around its

peaks – an approach that was later exploited in [MS06, How08]. Later, Cheng et al. used

this approach in their final VO implementation for the Mars rovers [CMM05, MCM07].

They also improved earlier implementations by using RANSAC in the least-squares

motion estimation step for outlier rejection. A different approach of outlier removal was

proposed by Milella and Siegward [MS06]. In their implementation, an outlier removal

stage was integrated into the iterative closest point (ICP) algorithm [BM92].

All the works cited above have in common that they triangulated 3D points from

every stereo pair, and the relative motion is solved as a 3D-to-3D registration problem.

Nister [NNB04] first proposed to use Perspective-n-Point (PnP) algorithms [HLON91] to

solve the camera pose estimation problem using 3D-to-2D matches.

Chapter 3

Preliminaries: Background

Broadly, a visual system is a collection of devices that transform measurements

of light into a representation of the surrounding environment with spatial or material

properties. Images in a camera depend on the geoemtry of the scene. Inferring that

information from a set of images is no easy task. In this chapter, we review some of the

important concepts and theories: projective geometry, epipolar geometry, homography

geometry, and so on. These theories are the cornerstones of visual odometry systems.

They equip vision technology to positively impact our quality of life. Large segments

borrow liberally from Yi Ma et al. [MSKS03], where more detailed related material can

be found.

3.1 Rigid-body Motion

Three dimensional Euclidean space E3 can be represented by a Cartesian coordi-

nate system:

X = [X ,Y,Z]T ∈ R3. (3.1)

In principle, the motion of object can be specified by the trajectory of every single

point on the object. However, for rigid objects, it is sufficient to specify motion with a

translation and a rotation.

26

27

XW

YW

ZW

r1

r2

r3

XC

ZC

YC

ω
o

Figure 3.1: Rotation of a rigid body about the point o (the original point of the coorindate
frame W and C) and along the axis ω . The coordinate frame W is before the rotation,
and the coordinate frame C is after. The rotation is specified by two orthonormal vectors
r1,r2,r3.

3.1.1 Representations of Rotation

A 3D translation may be specified simply as a vector T = [Tx,Ty,Tz]
T giving the

offset in each of the 3 coordinates. However, for a rotation, it’s a little more complicated.

Rotation Matrix

Rotation in three dimensional Euclidean space can be represented by a rotation

matrix:

R = [r1,r2,r3] ∈ R3×3, (3.2)

where r1,r2,r3 are three orthonormal vectors relative to the frame W , that deter-

mine the configuration of the new coordinate frame C, as shown in Figure 3.1.

A rotation matrix has properties such as: RT R = I, so it’s an orthogonal matrix.

Also the determinant of R must be 1. Hence R is a special orthogonal matrix. The space

28

of all such special orthogonal matrices in R3×3 is denoted by:

SO(3) = {R ∈ R3×3|RT R = I,det(R) = 1}. (3.3)

To rotate a 3D point with the rotation matrix R, suppose a given 3D point XW =

[XW ,YW ,ZW]T ∈ R3 is in the coordinate frame W , we have:

XW = RWCXC, (3.4)

where XC is the coordinate of the same point with respect to the frame C.

Euler Angles

The final rotation representation is Euler Angles. According to Euler’s rotation

theorem, Euler angles specify a rotation with a sequence of three elemental rotations.

The three Euler angles are defined as follows, shown in Figure 3.2:

1. α is the angle between the x axis and the N axis.

2. β is the angle between the z axis and the Z axis.

3. γ is the angle between the N axis and the X axis.

To convert Euler angles to a rotation matrix, the rotation must be represented with

three basic rotation matrices. The following three basic rotation matrices rotate vectors

by an angle ω about the x, y, or z axis:

Rx(ω) =


1 0 0

0 cosω sinω

0 −sinω cosω

 (3.5)

Ry(ω) =


cosω 0 −sinω

0 1 0

sinω 0 cosω

 (3.6)

Rz(ω) =


cosω sinω 0

−sinω cosω 0

0 0 1

 . (3.7)

29

N

x

y

z

Z

X

Y

α

β

γ

Figure 3.2: Proper Euler angles representing rotations about z, N, and Z axes. The xyz
(original) system is shown in blue, the XYZ (rotated) system is shown in red. The line of
nodes (N) is shown in green.

Therefore, the rotation specified with Euler angles α , β and γ can be representated

with a rotation matrix such as:

R =


cosγ sinγ 0

−sinγ cosγ 0

0 0 1




1 0 0

0 cosβ sinβ

0 −sinβ cosβ




cosα sinα 0

−sinα cosα 0

0 0 1

 . (3.8)

The definition given above sometimes refers to the classic Euler angles. Another

popular set of Euler angles are called Tait-Bryan angles or Cardan angles. It uses well-

known yaw, pitch and roll angles (φ ,θ ,ψ) to define a rotation. Tait-Bryan angles have

several different possibilities for choosing the order of rotation axes. In this section, we

use "z− y− x”, as shown in Figure 3.3. The conversion of this to rotation matrix is:

R =


cosψ sinψ 0

−sinψ cosψ 0

0 0 1




cosθ 0 −sinθ

0 1 0

sinθ 0 cosθ




1 0 0

0 cosφ sinφ

0 −sinφ cosφ

 . (3.9)

30

x

y

z

N(y')

N
T

X

Y

Z ψ

θ

Φ

Figure 3.3: Tait-Bryan angles and rotations in a z− y− x sequence.

Rotation Vector

Another method to represent a rotation in three dimensional Euclidean space is

using a vector. A rotation by an angle ‖ω‖ around a fixed axis ω can be specified by the

vector ω = [ωx,ωy,ωz]
T ∈ R3, again as shown in Figure 3.1.

A rotation vector can be converted to a rotation matrix using Rodrigues’ formula:

R = eω̂ = I +
ω̂

‖ω‖
sin(‖ω‖)+ ωωT − I

‖ω‖2 (1− cos(‖ω‖)), (3.10)

where I is the 3×3 identity matrix, and ω̂ denotes the cross-product matrix of ω:

ω̂ =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 . (3.11)

Rotation Quaternions

If we normalize the rotation vector ω to a unit vector θ , a rotation can be

represented as the unit vector [θ1,θ2,θ3]
T with the scale ‖ω‖.

Quaternions are defined by generalizing complex numbers in a fashion similar

to how complex numbers are generalized from real numbers. We know that complex

31

numbers are defined as C= R+Ri, with i2 =−1. A set of quaternions, denoted by H,

is defined as:

H= C+C j,with j2 =−1 and i · j =− j · i. (3.12)

An element of H is then:

q = q0 +q1i+q2 j+q3i j, q0,q1,q2,q3 ∈ R. (3.13)

A special subgroup of H is called the unit quaternions defined as:

‖q‖2 = q2
0 +q2

1 +q2
2 +q2

3 = 1. (3.14)

Given a rotation matrix R = eω̂ , normalized unit vector θ and the scale ‖ω‖, we

can associate a unit quaternion with it as:

q(R) = cos(
‖ω‖

2
)+ sin(

‖ω‖
2

)(θ1i+θ2 j+θ3i j) = q0 +q1i+q2 j+q3i j. (3.15)

q = [q0,q1,q2,q3]
T is called rotation quaternions. We want to highlight the

advantage of the rotation quaternions. Compared to Euler angles, they are simpler to

compose and avoid the problem of gimbal lock.

Gimbal lock is the loss of one degree of freedom in a three-dimensional, three-

gimbal mechanism that occurs when the axes of two of the three gimbals are driven into a

parallel configuration, “locking” the system into rotation in a degenerate two-dimensional

space. The problem of gimbal lock appears when one uses Euler angles in rotation

representations. Gimbal lock occurs because the map from Euler angles to rotations is

not a covering map – it is not a local homeomorphism at every point, and thus at some

points the rank (degrees of freedom) must drop below 3, at which point gimbal lock

occurs.

Compared to rotation matrices, they are more numerically stable and may be

more efficient. They are the recommended representation of rotations in optimization

problems, such as bundle adjustment (discussed in Section 3.5) [TMHF00]. Quaternions

have found their way into applications in computer graphics, computer vision, robotics,

navigation, molecular dynamics, flight dynamics, and orbital mechanics of satellites.

32

3.1.2 Rigid-body Motion

In sections above, we showed that a rigid body motion consists of a translation

and a rotation. The rotation denotes a special orthogonal group SO(3), and has various

representations, such as rotation matrix, rotation quaternions and Euler Angles.

In this section, we introduce the rigid-body motion. Suppose a given 3D point

XW = [XW ,YW ,ZW]T ∈ R3 given with respect to the coordinate frame W , then we have:

XW = RWCXC +TWC , (3.16)

where XC is the coordinate of the same point with respect to the frame C.

The set of all possible configurations of a rigid body can be described by the

space of rigid-body motions or special Euclidean transformations:

SE(3)=̇{g = (R,T)|R ∈ SO(3),T ∈ R3}. (3.17)

To introduce a matrix representation g = (R,T) for SE(3), we need to define

homogeneous coordinates by appending a “1” to the coordinates X = [X ,Y,Z]T ∈ R3 of

a point p ∈ E3. That yields a vector in R4:

X̃=̇

[
X

1

]
=


X

Y

Z

1

 ∈ R4. (3.18)

Using the new notation, the transformation of Equation 3.16 can be rewritten in a

linear form as:

X̃W =

[
XW

1

]
=

[
RWC TWC

0 1

][
XC

1

]
=̇g̃X̃C. (3.19)

So finally, we have a natural matrix representation of the special Euclidean transforma-

tions:

SE(3)=̇{g̃ =

[
R T

0 1

]
|R ∈ SO(3),T ∈ R3} ⊂ R4×4. (3.20)

33

3.2 Projective Camera

3.2.1 Perspective Camera without Distortion

A camera is an optical instrument that records images. Typically, a camera is

composed of a set of lenses with optical distortions. In this section, we discuss the

perspective camera model without taking non-linear distortions into consideration. This

is defined by the intrinsic matrix:

K =


f sx f sθ ox

0 f sy oy

0 0 1

 , (3.21)

where f is the camera focal length. sx and sy are called the scaling factors. They

define the size of the pixel (in metric units) along the x and y direction. When sx = sy,

each pixel is square. sθ is called a skew factor and it proportional to cot(θ), where θ is

the angle between the image axes x and y. (ox,oy) are the coordinates (in pixels) of the

principal point relative to the image reference frame.

Thus, the model to transform homogeneous coordinates of a 3D point to homoge-

neous coordinates of its image is:

λ x̃′ = λ


x′

y′

1

= KΠ0X̃ =


f sx f sθ ox

0 f sy oy

0 0 1




1 0 0 0

0 1 0 0

0 0 1 0




X

Y

Z

1

 , (3.22)

where λ = Z is written as an arbitrary positive scalar λ ∈ R+, since Z (the depth

of the point) is usually unknown.

To take the motion of the camera into consideration, a given 3D point XW =

[XW ,YW ,ZW]T ∈ R3 is given with respect to the world coordinate frame W , and the

camera introduces its coordinate frame C by moving g = (RWC,TWC) with respect to the

world coordinate frame. Based on Equation 3.19, we have

X̃C =

[
RCW TCW

0 1

]
X̃W , (3.23)

34

where [
RCW TCW

0 1

]
=

[
RWC TWC

0 1

]−1

, (3.24)

so RCW = RT
WC and TCW =−RT

WCTWC.

Putting Equation 3.23 and Equation 3.22 together, we have

λ


x′

y′

1

=


f sx f sθ ox

0 f sy oy

0 0 1




1 0 0 0

0 1 0 0

0 0 1 0


[

RCW TCW

0 1

]
XW

YW

ZW

1

 (3.25)

In matrix form, we have

λ x̃′ = KΠ0g̃X̃W . (3.26)

In summary, at this stage, we know how to project a 3D point in the world

coordinate frame to an image with known camera rigid motion and camera calibrated

intrinsic matrix. In the next section, we’ll discuss the camera distortion issue.

3.2.2 Camera Distortion

In camera intrinsic matrix K, we can only handle linear distortions. In reality, if a

camera with a wide field of view is used, significant non-linear distortion can often be

observed. Non-linear distortion is handled by introducing a radial distortion model and

a tangential distortion model. This model is used by Camera Calibration Toolbox for

Matlab.

Radial Distortion

Radial distortion is defined by additional parameters (ar1,ar2,ar3). Given undis-

torted coordinates (x,y), to incorporate the distortion, distorted coordinates (xd,yd) can

be computed by: [
xd

yd

]
= (1+ar1r2 +ar2r4 +ar3r6)

[
x

y

]
, (3.27)

where r2 = x2 + y2.

http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/parameters.html
http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/parameters.html

35

Tangential Distortion

Tangential distortion is defined by two additional parameters (at1,at2). Given

undistorted coordinates (x,y), to incorporate the distortion, distorted coordinates (xd,yd)

can be computed by: [
xd

yd

]
=

[
x

y

]
+

[
2at1xy+at2(r2 +2x2)

at1(r2 +2y2)+2at2xy

]
, (3.28)

where again r2 = x2 + y2.

Putting Equation 3.27 and Equation 3.28 together, we have[
xd

yd

]
= (1+ar1r2 +ar2r4 +ar3r6)

[
x

y

]
+

[
2at1xy+at2(r2 +2x2)

at1(r2 +2y2)+2at2xy

]
(3.29)

Summary

By now, we have built complete theories to project 3D points in the world to

a camera image with distortion. Through these procedures, (xd,yd) are the observed

coordinates in a distorted image in practice.

3.3 Epipolar Geometry

In the sections above, we discussed rigid motion and camera perspective. This

solved the problem of how to project a 3D point in the world to an image in the camera.

In the following two sections, we discuss the constraints of the projections of a 3D point

in two views.

One important constraint on the pixels between two views is the epipolar con-

straint. If we call x1,x2 corresponding points in two views, the epipolar constraint says:

Given x1 and the relative pose between two views (R,T), a epipolar line where x2 must

reside on can be computed. In Section 4.1.2 of Chapter 4, the epipolar searching of the

epipolar update module in our system is based on the epipolar constraint.

36

3.3.1 Calibrated Camera

In this section, we discuss the epipolar geometry of a calibrated case. For a

calibrated camera, the intrinsic parameters of the camera are known. For simplicity, we

assume the intrinsic matrix K is the identity matrix in the following discussions.

Assume the 3D coordinates of a 3D point relative to the two coordinate frames are

X1 ∈ R3 and X2 ∈ R3. From Section 3.1, we know that they are related by a rigid-body

transformation:

X2 = RX1 +T. (3.30)

Assuming the camera intrinsic matrix K is the identity and λ1,λ2 are the unknown

depths of the two views, we have:

λ2x̃2 = Rλ1x̃1 +T. (3.31)

Multiply both sides with x̃T
2 and the cross product T̂ of T , then we have:

x̃T
2 λ2T̂ x̃2 = xT

2 T̂ Rx̃1. (3.32)

Since T̂ x̃2 = T × x̃2 is perpendicular to x̃2, we have proven:

x̃T
2 T̂ Rx̃1 = 0 . (3.33)

The matrix E=̇T̂ R∈R3×3 is called the essential matrix. The epipolar geometry is

shown in Figure 3.4. Given an essential matrix E = T̂ R, it defines an epipolar relationship

between two views. The intersections of the line (o1,o2) with each image plane are

called epipoles, denoted by (e1,e2). The plane (o1,o2, p) is called an epipolar plane. The

intersection between the epipolar plane and the two views are two lines (l1, l2), called the

epipolar line. As shown in the figure, given x1 with unknown depth, the coordinate of its

corresponding projection (x2 or x′2) lies on the epipolar line l2.

There are some important properties of epipoles and epiolar lines:

1. The two epipoles (e1,e2) ∈ R3 are the left and right null spaces of E:

eT
2 E = 0, Ee1 = 0. (3.34)

37

2. To compute (e1,e2), we have e2 ∼ T and e1 ∼ RT T , where "∼” indicates equality

up to scalar factor.

3. x2 lying on l2 can be expressed as x̃T
2 l2 = 0, so we can compute l2 by:

l2 ∼ Ex̃1 ∈ R3. (3.35)

Similarly, we have:

l1 ∼ ET x̃2 ∈ R3. (3.36)

4. In each image, (e1,e2) lie on the epipolar line (l1, l2), respectively, thus we have:

lT1 e1 = 0, lT2 e2 = 0. (3.37)

Given x1 and (R,T), an epipolar line l2 that the corresponding x2 lies on can be

computed. Sometimes, we also need to solve the problem such as: given a set of matches

(x1,x2), how can we find E? E consists of R and T . R has three degrees of freedom, and

T has two, thus E has 5 degrees of freedom. Therefore, we need at least five matches to

compute E, which leads to Nister’s famous 5-point algorithm. Please refer to [Nis04]

for details. Another available algorithm to compute the essential matrix is the 8-point

algorithm, which is more straightforward and less complicated than the 5-point algorithm

for understanding. A brief description of the 8-point algorithm can be found in Appendix

A.1.

3.3.2 Uncalibrated Camera

In the previous section, we assume the camera intrinsic matrix is known. When

the camera intrinsic matrix is unknown, we face the uncalibrated case. Although, our

visual odometry system requires known camera parameters to work, we also briefly

introduce the epipolar constraint under the uncalibrated condition for completeness.

From Equation 3.22, we know λ x̃ = KX, where x̃ is the homogeneous represen-

tation of the 2D projection and X is the 3D point. Substitute this into Equation 3.30, it

becomes:

λ2K−1
2 x̃2 = Rλ1K−1

1 x̃1 +T. (3.38)

38

y y

o1 o2

x

xz z
e1 e2

x1 x2

p

p'

x'2l1
l2

(R, T)

Figure 3.4: The epipolar geometry. Two projections x1,x2 ∈ R3 of a 3D point p. The
rigid transformation between the two views is (R,T) ∈ SE(3). The intersections (e1,e2)
of the line (o1,o2) with each image plane are called epipoles. The lines (l1, l2) are called
epipolar lines, which are the intersection of the plane (o1,o2, p) with the two image
planes. Given x1 with unknown depth, the coordinate of its corresponding projection (x2
or x′2) lies on the epipolar line l2.

Similarly, multiply both sides with (K−1
2 x̃2)

T and the cross product T̂ of T , and

then because T̂ K−1
2 x̃2 = T × (K−1

2 x̃2) is perpendicular to K−1
2 x̃2, we have:

x̃2K−T
2 T̂ RK−1

1 x̃1 = 0 . (3.39)

F = K−T
2 T̂ RK−1

1 is called the fundamental matrix. Similar to the calibrated case,

we may interpret the equation l2 ∼ F x̃1 as F transferring a point in the first view to a line

in the second view.

3.3.3 Summary

In summary, in this section, we discussed an important geometric constraint for

two corresponding coordinates x1,x2 at two views. Regardless of the depth of the 3D

point p, given x1 and (R,T), an epipolar line l2 where the corresponding x2 lies on can

be computed with Equation 3.35. This can significantly boost the efficiency of the feature

matching in Section 4.1.2 of Chapter 4.

39

3.4 Homography Geometry

The projections of the 3D point in general positions in two views comply with

the epipolar constraints. If we have more knowledge (or assumptions) of the 3D points,

what else can we do? In this section, we discuss the homography geometry. It can be

applied when we believe a set of 3D points are in the same plane. In Chapter 5, we use

this assumption to estimate the ground plane for the scale drift correction in our visual

odometry system.

Starting from Equation 3.30 again, we have X2 = RX1 +T . Let N = [n1,n2,n3]
T

be the unit normal vector of the plane P with respect to the first camera frame, and let d

be the distance from the plane P to the first camera o1, shown in Figure 3.5. Then we

have:

1
d

NT X1 = 1. (3.40)

Substituting Equation 3.40 into Equation 3.30 gives:

X2 = RX1 +T
1
d

NT X1 = (R+
1
1

T NT)X1. (3.41)

We call the matrix H=̇ = R+ 1
1T NT the homography matrix. Let λ1, λ2 be the

depth of the 3D point p with the respect to two views, respectively. Assuming the intrinsic

matrix K is known and the identity gives:

λ2x̃2 = Hλ1x̃1⇒ x̃2 ∼ Hx̃1. (3.42)

Equation 3.42 can be interpreted as a pixel-to-pixel homography mapping induced

by a plane, instead of a pixel-to-line mapping by the epipolar constraint. In Chapter 5,

we build a similar homography mapping to find the optimal ground plane by varying the

plane parameters.

The homography matrix H has 8 degrees of freedom. To compute the homography

matrix, we need at least 4 pairs of matches in two views. Please refer to Appendix A.2

for details.

40

y y

o1 o2

x

xz z
e1 e2

x1 x2

p

p'

x'2l1
l2

(R, T)

N

d

Figure 3.5: The homography geometry. Two projections x1,x2 ∈ R3 of a 3D point p
on a plane P. They are related by a homography H that is introduced by the plane.
N = [n1,n2,n3]

T is the unit normal vector of the plane P with respect to the first camera
frame. d is the distance from the plane P to the first camera o1.

3.5 Bundle Adjustment

Given a set of 3D points with their corresponding 2D feature matches in a set

of views and the relative poses between these views, bundle adjustment is a set of

optimization methods used in computer vision to refine both the 3D points and the view

poses. Bundle adjustment is almost always used as the last step of every feature-based

3D reconstruction algorithm. V-SLAM systems typically use it to refine the 3D scene

structure, and some visual odometry systems use it to refine the trajectory as well.

Let Pi = [RT], i = 1 · · ·M are a set of view poses. Let Xj, j = 1 · · ·N are a set of

3D points. (ui
j,v

i
j) are the 2D feature matches of the 3D points Xj in i-th view. The

bundle adjustment solves an optimization problem, such as:

min
Pi,X̃ j

∑
i, j

ω
i
j((u

i
j−

Pi
1X̃ j

Pi
3X̃ j

)2 +(vi
j−

Pi
2X̃ j

Pi
3X̃ j

)2), (3.43)

41

X1P1 X2 X3 X4P2 P3 P4

(u1
1, v

1
1)

(u1
4, v

1
4)

(u2
1, v

2
1)

(u2
4, v

2
4)

(u3
1, v

3
1)

(u3
4, v

3
4)

(u4
1, v

4
1)

(u4
4, v

4
4)

...

...

...

...

Figure 3.6: Sparse Jacobian matrix structure for a bundle adjustment. Structure of the a
sparse Jacobian matrix for a bundle adjustment problem consisting of 4 cameras and 4
3D points. The gray entries are all zero.

where

P3×4 =
[
R T

]
=


P1

P2

P3

 . (3.44)

As Triggs et al. pointed out in [TMHF00], there are some common miscon-

ceptions in the literature. The most important one may be Bundle adjustment is slow:

These statements treat bundle adjustment as a general optimization problem using a

general-purpose optimization routine that completely ignores the problem structure and

sparseness, as shown in Figure 3.6. In practice, bundle adjustment is much more efficient

than this. Therefore, unlike other visual odometry systems, effective use of bundle

adjustment technology to refine both 3D structure and the trajectory through a novel

multi-threaded design in our system yields good accuracy and efficiency. We’ll discuss

our bundle adjustment module design in Chapter 4.

42

3.6 Kalman Filter

The Kalman Filter is an algorithm that uses a series of measurements observed

over time, containing noise and other uncertainties, and produces estimates of the un-

known variables and their estimation uncertainties. An important advantage of the

Kalman Filter is that it is a recursive algorithm, which means that it only requires the

previous state and the current measurement to estimate the current new state. Compared

to alternative approaches, such as least-square optimization, this advantage is obvious,

and it has been proven that the estimation of the Kalman filter is optimal if all the assump-

tions hold (the Gaussian noise model, the covariance of both process and observation

noise, and so on). It should be noted that it is possible to derive the same results using

the least square argument [Jaz70]. Rudolf Kalman first introduced its theory in [KRE60].

Let x be the underlying variables to estimate. The Kalman Filter requires a

state-transition model F to transit the underlying variables xk−1 to xk by:

xk = Fkxk−1 +Bkuk +wk, (3.45)

where

1. xk is the underlying variables to estimate.

2. Fk is the state transition model that transits xk−1 to xk.

3. uk is the input control variables, which is optional (can always be 0).

4. Bk is the control-input model.

5. wk is the process noise, which is assumed to be a zero mean multivariate Gaussian

noise with covariance Qk, such as wk ∼ N(0,Qk).

The relationship between the underlying variables x and the observation (or

measurement) z is given by:

zk = Hkxk +vk, (3.46)

where

43

1. Hk is the observation model that transforms the state variables to the observed

variables. When we can directly observe the state variables, H can be identity.

2. vk is the observation noise, which is assumed to be zero mean multivariate Gaussian

noise with covariance Uk, such as vk ∼ N(0,Uk).

The state of the Kalman filter is represented by two variables:

1. x is the state variable.

2. P is the error covariance of the variable, which reflects its certainty.

The Kalman filter operates recursively on a series of noisy input data, and pro-

duces statistically optimal estimates of the underlying variables. The algorithm works in

a two-step process. Before the measurement zk is observed, the Kalman filter predicts the

estimates of the current state variables xk|k−1 along with their uncertainties Pk|k−1 using

the transition model F , input model B, input variables u and the process noise covariance

Q. Here xk|k−1 is called the priori state estimate. They are the predicted estimates at time

k given observations up to and including at time k−1. Similarly, we have a priori error

covariance Pk|k−1.

Once the measurements z with their measurement uncertainties U are obtained,

these a priori estimates xk|k−1 are updated to the posteriori estimates xk|k in a way that

more weight is given to the estimates with higher certainty, using the observation model

H and the observation noise covariance U . Pk|k−1 is updated to Pk|k as well. Therefore,

the estimates are expected to be optimal.

The algorithm details are shown below:

1. Predict

(a) Predicted priori state estimate

xk|k−1 = Fkxk−1|k−1 +Bkuk. (3.47)

(b) Predicted priori estimate covariance

Pk|k−1 = FkPk−1|k−1FT
k +Qk. (3.48)

44

2. Update

(a) Measurement residual

yk = zk−Hkxk|k−1. (3.49)

(b) Residual covariance

Sk = HkPk|k−1HT
k +Uk. (3.50)

(c) Kalman gain

Kk = Pk|k−1HT
k S−1

k . (3.51)

(d) Updated posteriori state estimate

xk|k = xk|k−1 +Kkyk. (3.52)

(e) Updated posteriori estimate covariance

Pk|k = (I−KkHk)Pk|k−1. (3.53)

The Kalman Filter is used in our system in ground estimation. Ground plane

variables, such as pitch angle, ground height and so on, are the state variables and also

the observed variables by each individual cue, such as 3D points triangulation, dense

inter-frame stereo, and object detection. A novel data-driven mechanism is proposed

to learn models from training data that relate observation covariances for each cue to

error behavior of its underlying variables. During the system run, this allows per-frame

adaptation of observation covariances based on relative confidences inferred from visual

data. Our framework significantly boosts not only the accuracy of scale drift correction

of the monocular visual odometry, but also that of applications of monocular object

localization that rely on the ground plane. We’ll discuss these in Chapter 5 and 7.

Chapter 4

Monocular Architectures

In this chapter, we describe the system architecture of our monocular structure

from motion (SFM) system. The system has three different phases, steady state, keyframe

and keyframe + 1. The architecture of our system in different phases is carefully designed

to meet an unusual real-time requirement for a SFM system, that is our system is

optimized to output pose within 50 ms in the worst case on a laptop with Intel Core i7

2.40 GHz processor with 8GB DDR3 RAM and 6M cache, while average case operation

is over 30 fps (33ms). In contrast to this, typically, a SFM system may produce a spike

in delays when keyframes are added, or loop closure is performed [CLFP10]. We also

addressed the challenge of robust multithreading, even for scenes with large motions and

rapidly changing imagery. Section 4.1 covers the system architecture of the steady state,

and Section 4.2 covers the keyframe and keyframe + 1 phases.

4.1 Steady State Architecture

To initialize, the system extracts FAST corners [RPD10] with ORB descriptors

[RRKB11b] and matches between consecutive frames using Fast Library for Approximate

Nearest Neighbors (FLANN) [ML09] [ML12]. With sufficient baseline (around 5 frames),

a set of 3D points is initialized by relative pose estimation [Nis04], triangulation and

bundle adjustment. Each frame during initialization is processed within 10 ms.

At steady state, the system has access to a stable set of at least Ns 3D points

that have undergone extensive bundle adjustment in prior frames (we choose Ns = 100).

45

46

Figure 4.1: System architecture for every steady state frame. The acronyms above
represent PGM: Pose-guided matching, LBA: local bundle adjustment, R: re-finding, U:
Update motion model, ECS: Epipolar constrained search, T: triangulation. The modules
are depicted in their multithreading arrangement, in correct synchronization order but not
to scale.

The preceding poses have also undergone multiple non-linear refinements, and so can

be considered highly accurate. The system architecture at every frame in steady state

operation is illustrated in Figure 4.1.

4.1.1 Pose Module

Around 2000 FAST corners with Shi-Tomasi filtering [ST94b] are extracted from

a typical outdoor image and ORB descriptors [RRKB11b] are computed. Using the pose

of the previous frame, the pose of the current frame is predicted, assuming constant

velocity. Note that this simple motion model is not an integral part of our estimation.

It is only used to expedite matching by using previously estimated pose as guidance

– we explicitly compute the camera pose at each frame using point correspondences.

The existing set of stable 3D points are projected into the image using the predicted

pose and the ORB descriptor for each is compared to those within a window of side

2rs pixels (we choose rs = 15). Given these 2D-3D correspondences, we compute the

actual camera pose using perspective n-point (PnP) pose estimation in a robust RANSAC

framework [FB81b]. We use the EPnP method of [LMNF09] with a model size of four

points. The RANSAC pose with the largest consensus set is refined using a Levenberg-

47

Table 4.1: Timings for various stages of the pose module.
FAST corner detection + Shi-Tomasi 1 ms
ORB descriptor extraction 5 ms
Pose-guided matching 1 ms
PnP (RANSAC, 500 iterations) 15 ms
Nonlinear pose refinement 1 ms

Marquardt nonlinear optimization [LA09].

Our system can easily handle other choices for matching, in particular, we have

achieved similar results using normalized cross-correlation (NCC) instead of ORB. But

associating a descriptor like ORB with a 3D point can have ancillary benefits, as we will

observe in the following sections.

Feature and descriptor extraction, pose-guided matching, and pose estimation

are all easily computed in parallel across multiple threads, using a shared memory

multiprocessing platform such as OpenMP [DM98]. Across three threads, the timings

for various components of the pose module are summarized in Table 4.1.

4.1.2 Epipolar Update Module

If the application scenario involves scenes where the set of 3D points being viewed

remains unchanged, then the pose module by itself would be sufficient to maintain the

camera pose over extended periods. However, in outdoor applications such as autonomous

navigation, 3D scene points rapidly move out of view within a few frames. Thus, the

stable set of points used for pose computation must be continually updated, which is the

task entrusted to our epipolar search module.

As depicted in Figure 4.1, the epipolar search module is computed in parallel

across two threads and follows pose estimation at each frame. The mechanism for

epipolar search is illustrated in Figure 4.2. Let the most recent prior keyframe be frame

0. After pose computation at frame n, for every feature f0 in the keyframe at location

(x0,y0), we consider a window of side 2re centered at (x0 +∆x,y0 +∆y) in frame n, with

re proportional to camera velocity. The displacement (∆x,∆y) is computed based on

the distance of (x0,y0) from the horizon (computed using the ground plane in Sec. 5).

Adapting re and (∆x,∆y) to the velocity helps in fast highway sequences, where disparity

48

ranges can vary significantly between the far and near fields. Thus, an accurate ground

plane estimation also has benefits for epipolar search.

We consider the intersection region of this square with a rectilinear band p pixels

wide, centered around the epipolar line corresponding to f0 in frame n. The ORB

descriptors or NCC scores for all FAST corners that lie within this intersection region are

compared to the descriptor for f0. The closest match, fn, is found in terms of Hamming

distance. This epipolar matching procedure is also repeated by computing the closest

match to fn in frame n−1, call it fn−1. A match is accepted only if fn−1 also matches

f0. Note that only two sets of matches with respect to frames (0,n) and (n−1,n) must

be computed at the frame n, since the matches between (0,n− 1) have already been

computed at frame n−1.

The parameter re is automatically determined by the size of the motion. We use

re = min{1200‖ω‖2,10}, where ω is the differential rotation between frames n−1 and

n. Since pose estimates are highly accurate due to continuous refinement by bundle

adjustment (Sec. 4.1.3), epipolar lines are deemed accurate and we choose a stringent

value of p = 3 to impose the epipolar constraint. The computation of the Hamming

distance for 256-bit ORB descriptors or the NCC score in a region of interest is performed

as a block, with a fast SSE implementation. To rapidly search for features that lie within

the above region of interest, the detected features in an image are stored in a lookup table

data structure. The key into the table is the column index of the feature and within each

bucket, features are stored in sorted row order. Across two threads, this allows circular

matching for a triplet of images, with up to 500 features in each, in 10− 15 ms. As

opposed to a brute-force search, the lookup table results in speedups by up to a factor of

10, especially in our outdoor driving application where images traditionally have wide

aspect ratios (to cover greater field of view while limiting uninformative regions such as

the sky).

The features that are circularly matched in frame n are triangulated with respect to

the most recent keyframe (frame 0). This two-view triangulation requires approximately 2

ms per frame. The reconstructed 3D point is back-projected in all the frames 1, · · · ,n−1

and is retained only if a match is found within a very tight window of side 2rb pixels (we

choose rb = 3). Working together with the local bundle adjustment in Section 4.1.3, this

49

Figure 4.2: Mechanism of epipolar constrained search, triangulation and validation by
reprojection to existing poses. For current frame n, only 3D points that are validated
against all frames 1 to n− 1 are retained. Only persistent 3D points that survive for
greater than L frames may be collected by the next keyframe.

50

acts as a replacement for a more accurate, but expensive, multiview triangulation and is

satisfactory since epipolar search produces a large number of 3D points, but only the most

reliable ones may be used for pose estimation. However, these 3D points are not added

to the stable point cloud yet. For that they must first undergo a local bundle adjustment

and be collected by the main thread at a keyframe, which are aspects explained in the

following sections. Also, note in Figure 4.2, the exception for the keyframe and frame 1,

where validation is not possible. However, this is not an issue since only long tracks are

eventually collected by the next keyframe, as explained in Section 4.2.

As an example of the architectural difference, PTAM uses the existing distribution

of points to restrict epipolar search range, which is not desirable for fast-moving vehicles.

It also performs epipolar search on demand and data association refinement is used to

validate the point in other frames during free time on the mapping thread when exploring

already seen regions. Our system does not have the leeway to revisit regions of the

map, so all our refinement must be online. These considerations led us to move epipolar

search to a separate thread of its own, but it presents a unique opportunity for enhancing

robustness, as described in Section 4.1.2. Another distinction from PTAM necessary for

autonomous driving is a bundle adjustment at every keyframe regardless of computational

load of other tracking or mapping tasks. So we introduce novel keyframe architectures to

accommodate timing constraints and maintain thread safety, as discussed in Section 4.2.

4.1.3 Local Bundle Adjustment Module

To refine camera poses and 3D points incorporating information from multiple

frames, we implement a sliding window local bundle adjustment. The key data structure

is the local bundle cache, which is composed of a frame cache and a match cache. The

frame cache stores feature locations, descriptors and camera poses from the most recent

N frames. It also stores images for those N frames, for display and debugging purposes.

In our system, N = 10. The match cache is a list of tables, one element corresponding to

each frame. The key into the table is the identity of a 3D point visible in the frame and

the stored entries are the identities of the corresponding 2D features in various frames.

During small motions, the system prevents addition of new keyframes and ensures

that the previous keyframe is included in the bundle cache. This guarantees that the

51

Table 4.2: Epipolar update and local bundle timings in steady state (parallel modules).
Module Operation Timing

Epipolar Update
Constrained search 10−15 ms
Triangulation 1−3 ms

Local Bundle
Windowed bundle adjustment 10−20 ms
Re-find 3D points 1 ms
Update motion model 0 ms

baseline between the previous keyframe and the current frame does not become too small,

which improves the stability of bundle adjustment and yields accurate pose estimates

even in near-stationary situations.

After bundle adjustment, we give the system a chance to re-find lost 3D points

using the optimized pose. Since the system spends considerable effort in maintaining

a high-quality set of 3D points for pose compuation, it is worthwhile to incur a small

overhead to recover any temporarily lost ones (due to image artifacts such as blur, specular

reflections or shadows). In fact, a stable 3D point is permanently discarded only when its

projection using the current pose falls outside the image boundaries. Since the bundle

adjusted pose is highly accurate, we can perform re-finding by matching ORB descriptors

on FAST corners within a very tight window of side 2r f pixels (we choose r f = 10). This

ensures re-finding is rapidly achieved within 1 ms.

We use the publicly available SBA package [LA09] for bundle adjustment. In

parallel, the motion model for predicting the pose of the next frame is also updated in

this module. The timings for the parallel epipolar update and local bundle adjustment

modules are summarized in Table 4.2.

4.1.4 Discussion

We highlight that besides the obvious speed advantages, moving epipolar search

to a new thread also greatly contributes to the accuracy and robustness of the system.A

system that relies on 2D-3D correspondences might update its stable point set by perform-

ing an epipolar search in the frame preceding a keyframe. However, the support for the

3D points introduced by this mechanism is limited to just the triplet used for the circular

matching and triangulation, and the quality of these 3D points are not guaranteed. By

52

performing the circular matching at every frame, we may supply 3D points with tracks of

length up to the distance from the preceding keyframe. Additionally, further validation

and outlier rejection mechanisms happen in this step. Clearly, the extensively validated

set of long tracks provided by the epipolar thread in our multithread system is far more

likely to be free of outliers, while contributing longer-range constraints for a more stable

pose estimation.

Our novel multithreaded architecture also has efficiency advantages. Bundle

adjustment has become a standard component in SFM or SLAM system [MLD+06,KM07,

WSS11]. Our system performs a local bundle and a keyframe bundle including the 10 and

5 most recent frames and keyframes, respectively. These two bundle adjustments are for

better local accuracy. In our design, the epipolar module operates in parallel with the local

bundle module. In contrast to large scale multithreaded bundle adjustment [WACS11],

small scale bundle (for example, a local bundle having 10 views and hundreds of points)

is not significantly faster with multithreading. The epipolar update module, thus, allows

better 3D points while occupying the idle secondary and tertiary threads.

4.2 Keyframe and Recovery Architectures

4.2.1 Keyframe

The system cannot maintain steady state indefinitely, since 3D points are gradually

lost due to tracking failures or when they move out of the field of view. The latter is

an important consideration in “forward moving” systems for autonomous driving (as

opposed to “browsing” systems such as PTAM), so the role of keyframes is very important

in keeping the system alive. The purpose of a keyframe is threefold:

• Collect 3D points with long tracks from the epipolar thread, refine them with local

bundle adjustment and add to the set of stable points in the main thread.

• Trigger global bundle adjustment based on the previous few keyframes that refines

3D points and keyframe poses.

• Provide the frame where newly added 3D points “reside”.

53

Figure 4.3: System architecture for keyframes. C+R stands for a collection and refinding
module. It collates persistent 3D points tracked over at least L frames in the epipolar
thread and re-finds them in the current frame using the output of the pose module. The
LBA is now different from that for steady state, since its cache has been updated with
3D points and their corresponding 2D locations in all the relevant frames on the epipolar
thread.

The modules that define operations at a keyframe are illustrated in Figure 4.3.

The pose module remains unchanged from the steady state. It is followed by a collection

stage, where 3D points triangulated at each frame in the epipolar thread are gathered by

the main thread. Only persistent 3D points that stem from features matched over at least

L frames are collected (our circular matching for epipolar search ensures this is easily

achieved by seeking 3D points only from at least L frames after the previous keyframe).

Note that this mechanism imposes two necessary conditions for a point to be considered

for inclusion into the stable set – it must be visible in at least two keyframes and must

be tracked over at least L frames. While stringent, these conditions inherently enhance

the chances that only reliable 3D points are added into the main thread. In our system,

L = 3 regardless of environment, although similar results are also obtained for L up to 5

in outdoor environments.

The collected 3D points must reside on a keyframe for all subsequent operations,

so a re-finding operation is performed by projecting them using the estimated pose

for the frame and finding the best ORB match in a circular region of radius 10 pixels.

Now the existing stable 3D points, the collected 3D points from the epipolar thread,

their projections in all the frames within the local bundle cache and the corresponding

54

cameras undergo local bundle adjustment. Note that the bundle adjustment at keyframes

differs from steady state operation, but adding long tracks into the bundle adjustment

at keyframes is a reason we can avoid more expensive multiview triangulation at each

frame in the epipolar thread. These refined 3D points are now added to the stable point

set and can be tracked for pose computations in subsequent frames. The residence of

these 3D points is the current keyframe and their 2D feature locations

The modules that define operations at the frame immediately after a keyframe

are illustrated in Figure 4.4. The pose module re-finds the (new) set of stable 3D points.

The RANSAC-based PnP will also discard outliers among the newly added 3D points.

The pose module is now split across only two threads, in order to accommodate a global

bundle adjustment in the main thread. This bundle adjustment involves the previous K

keyframes and their associated 3D points, in order to introduce long-range constraints

to better optimize the newly added set of 3D points. For our system, choosing K = 5

allows the global bundle adjustment to finish within 15 ms. There are two reasons a

more expensive bundle adjustment involving a much larger set of previous keyframes

(or even the whole map) is not necessary to refine 3D points with long-range constraints.

First, the imagery in autonomous driving applications is fast moving and does not involve

repetitions, so introducing more keyframes into the global bundle adjustment yields

at best marginal benefits. Second, our goal is instantaneous pose output rather than

map-building, so even keyframes are not afforded the luxury of delayed output. This

is in contrast to parallel systems such as [CLFP10] where keyframes may produce a

noticeable spike in the per-frame delays.

Following global bundle adjustment, the 3D coordinates of all the points are up-

dated. Note that overlapping sets of 3D points are used by both global bundle adjustment

and pose modules in parallel, however, both may also cause this set to change (PnP

may reject 3D points that are outliers, while bundle adjustment may move the position

of 3D points). To ensure thread safety, an update module is included that reconciles

changes in the 3D point cloud from both the prior parallel modules. The local bundle

adjustment module, which simply reads in 3D point identities, receives this updated set

for optimization based on the N frames in the local bundle cache. In parallel with local

bundle adjustment, the epipolar search also makes use of the updated keyframe pose.

55

Figure 4.4: System architecture for frame following a keyframe. GBA stands for global
bundle adjustment. Note that GBA usually finishes within the time consumed by the pose
module. The cache update module reconciles the 3D points modified by both PnP and
GBA, before it is used by LBA.

Note that while the keyframe pose has seen a global bundle adjustment, the pose of the

subsequent frame has not. This does not cause any inconsistency in practice since poses

tend to be much more stable than points – a camera is constrained by hundreds of points,

but a point is visible only in a few cameras. Thereafter, the system resumes steady-state

operation until the next keyframe, unless a recovery or firewall condition is triggered.

The following sections explain those concepts in detail.

4.2.2 Error-Correcting Mechanisms

On rare occasions, the system might encounter a frame where pose-guided match-

ing fails to find any features (due to imaging artifacts or a sudden large motion). In

such a situation, a recovery mode is triggered, as illustrated in Figure 4.5. Let the frame

where system recovery initiates be n and let k be the immediately preceding keyframe.

During recovery, the frames (n,n−1) are matched by comparing ORB descriptors over

the entire image using fast FLANN and accepting only bidirectional matches. Relative

pose is computed using the 5-point algorithm [Nis04] in a robust RANSAC framework

and inlier matches are triangulated.

However, scale information is lost in the process. So, we also consider 3D

points observed between frames (n−1,k). Both the sets of 3D points are moved to the

56

Figure 4.5: System architecture for a recovery frame. FM stands for Feature matching,
BA-1 and BA-2 are bundle adjustments and S denotes scale recovery.

coordinate system of frame n−1 and a 1-point RANSAC is performed. The hypothesis

for the RANSAC is the ratio of the norms of the sampled 3D point in the two sets.

The corrected scale factor between frames (n,n− 1) is assigned as the average ratio

in the largest consensus set. To ensure that 3D points used for scale recovery are as

accurate as possible, two instances of bundle adjustments are run in parallel – one

between frames (n,n−1) and another between frames (n−1,k). The system also has

an alternative mechanism to recover the scale, which is to simply use the scale between

frames (n− 1,k) for frames (n,n− 1). When the system doesn’t keep repeating the

recovery, this mechanism is used to recover the scale. For sequences in the KITTI dataset,

recovery is required on an average once in 1500 frames.

4.3 Summary

We have presented a novel multithreaded system for largescale, real-time, monocu-

lar visual odometry, targeted towards autonomous driving applications with fast-changing

imagery. Our key contribution is a demonstration that judicious multithreaded design

can boost both the speed and accuracy for handling challenging road conditions. Our

system is optimized to provide pose output in real-time at every frame, without delays

for keyframe insertion or global bundle adjustment. This is achieved through a novel

per-frame epipolar search mechanism that generates redundantly validated 3D points

57

persistent across long tracks and an efficient keyframe architecture to perform online

thread-safe global bundle adjustment in parallel with pose computation.

This chapter is based on “Parallel, real-time monocular visual odometry”, by

Shiyu Song, Manmohan Chandraker, Clark Guest as it appears in proceedings of Robotics

and Automation (ICRA), 2013 IEEE International Conference on, May 6-10 2013,

Karlsruhe.

This chapter in part, has been submitted for publication, as it may appear in “High

Accuracy Monocular SFM and Scale Correction for Autonomous Driving”, by Shiyu

Song, Manmohan Chandraker, Clark C. Guest, in IEEE Transactions on Pattern Analysis

and Machine Intelligence.

Chapter 5

Ground Plane Estimation

Scale drift correction is an integral component of monocular SLAM. In practice,

it is the single most important aspect that ensures accuracy. We estimate the depth and

orientation of the ground plane relative to the camera for scale correction.

Multiple methods like triangulation of sparse feature matches and dense stereo

between successive frames can be used to estimate the ground plane. We propose a

principled approach to combine these cues to reflect our belief in the relative accuracy of

each cue. Naturally, this belief should be influenced by both the input at a particular frame

and observations from training data. We achieve this by learning models from extensive

training data to relate the observation covariance for each cue to the error behavior of its

underlying variables. During testing, the error distributions at every frame adapt the data

fusion observation covariances using those learned models. The framework is illustrated

in Figure 5.1 and the following subsections discuss the technical details. In Section 5.1,

we introduce some background for scale drift of a monocular SLAM system, cue fusion

based on the Kalman filter and some notations we use. In Section 5.2, we describe how

we collect observations from each method. In Section 5.3, we talk about how we trained

the learning models and how we used them in testing.

5.1 Background

A vector in Rn is denoted in bold fonts, as x = (x1, · · · ,xn)
>. A matrix is denoted

in bold capitals, as X. The homogeneous representation of vector x is denoted as

58

59

Method 1

Method 2

Trained
Model 1

Trained
Model 2

Cues

Cues Kalman Filter
Fusion

Observation and
adaptive covariance

Observation and
adaptive covariance

Fused
Estimate

Method 3
Trained
Model 3

Cues
Observation and

adaptive covariance

Figure 5.1: Adaptive cue combination framework. Trained models for each method
relate their observation covariances to the error behaviors of underlying variables. These
models allow determination of the relative confidence in each method during testing,
based on per-frame visual data. A Kalman filter is used to fuse them and produce the
optimal estimate.

x̃ = (x>,1)>. A variable x in frame k of a sequence is denoted with superscripts, as xk.

5.1.1 Ground Plane Estimation

As shown in Figure 5.2, the camera height (sometimes also called the ground

height) h is defined as the distance from the camera principal center to the ground plane.

Usually, the camera is not perfectly parallel to the ground plane and there exists a non-

zero pitch angle θ . The unit normal vector n = (n1,n2,n3)
T and the ground height h

define the ground plane. For a 3D point (X ,Y,Z)T on the ground plane, we have:

h = Y cos(θ)−Zsin(θ) (5.1)

Under scale drift, any estimated length l is ambiguous up to a scale factor s = ł/l∗,

where l∗ is the ground truth length. The objective of scale correction is to compute s.

Given the calibrated height of camera from ground h∗, computing the apparent height

h yields the scale factor s = h/h∗. Then the camera translation t can be adjusted as

tnew = t/s, thereby correcting the scale drift. In Section 5.2, we describe a novel, highly

accurate method for estimating the ground height h using an adaptive cue combination

mechanism.

60

nZ

Yh

θ

X

Figure 5.2: The geometry of ground plane estimation. The camera height h is defined
as the distance from the camera principal center to the ground plane. The camera pitch
angle is θ and n denotes the ground plane normal vector. Thus, the ground plane is
defined by {n,h}

.

5.1.2 Data Fusion with Kalman Filter

To combine estimates from various methods, a natural framework is a Kalman

filter. Its model of state evolution is

xk = Axk−1 +wk−1, p(w)∼ N(0,Q),

zk = Hxk +vk−1, p(v)∼ N(0,U), (5.2)

where x is the state variable, z the observation, while Q and U are the covariances

of the process and observation noise, respectively, that are assumed to be zero mean

multivariate normal distributions. Our state variable in (5.2) is simply the equation of

the ground plane, thus, x = (n>,h)>. Since ‖n‖= 1, n2 is determined by n1 and n3 and

our observation is z = (n1,n3,h)>. Thus, our state transition matrix and the observation

61

model are given by

A =

[
R t

0> 1

]>
, H =


1 0 0 0

0 0 1 0

0 0 0 1

 . (5.3)

Suppose methods j = 1, · · · ,m are used to estimate the ground plane, each with

its observation covariance U j. Then, with

Uk = (
m

∑
i=1

(Uk
i)
−1)−1, (5.4)

the fusion equations at time instant k are

zk = Uk
m

∑
j=1

(Uk
j)
−1zk

j, Hk = Uk
m

∑
j=1

(Uk
j)
−1Hk

j. (5.5)

Meaningful estimation of Uk at every frame, with the correctly proportional Uk
j

for each cue, is essential for principled cue combination. Traditionally, fixed covariances

are used to combine cues, which does not account for the per-frame variation in the effec-

tiveness of each cue across a video sequence. In contrast, in the following sections, we

propose a rigorous data-driven mechanism to learn models to adapt per-frame covariances

for each cue, based on error distributions of the underlying variables.

5.2 Cues for Ground Plane Estimation

We propose using multiple methods such as triangulation of sparse feature

matches, dense stereo between successive frames and object detection bounding boxes

to estimate the ground plane. The cues provided by these methods are combined in a

principled framework that accounts for their per-frame relative effectiveness. In this

section, we describe the cues and the next section describes their combination.

5.2.1 Plane-Guided Dense Stereo

We assume that a region of interest (ROI) in the foreground (middle fifth of the

lower third of the image) corresponds to a planar ground. For a hypothesized value of

62

R, t

Frame k Frame k+1

ROI

n

h

Homography mapping

Figure 5.3: Homography mapping for plane-guided dense stereo. For a hypothesized
ground plane {n,h} and relative camera pose (R, t) between frames k and k+1, a per-
pixel mapping can be computed within a region of interest (ROI) by using the homography
matrix G = R+h−1tn>.

{h,n} and relative camera pose {R, t} between frames k and k+1 (For KITTI’s 10Hz

input rate, there is often little overlap of ROI between frames k and k+2. Conversely, a

baseline between k and k+1 is sufficient. For other data with 30Hz imagery, we adapt

the baseline accordingly.), a per-pixel mapping can be computed using the homography

matrix

G = R+
1
h

tn>. (5.6)

The homography mapping is illustrated in Figure 5.3. Note that t differs from the

true translation t∗ by an unknown scale drift factor, encoded in the h we wish to estimate.

Pixels in frame k+1 are mapped to frame k (subpixel accuracy is important for good

performance) and the sum of absolute differences (SAD) is computed over bi-linearly

interpolated image intensities. With ρ = 1.5, a Nelder-Mead simplex routine is used to

estimate the {h,n} that minimize:

63

h

n3

1.2 1.4 1.6 1.8 2.0

-0.06

-0.04

-0.02

0

h

n3

1.2 1.4 1.6 1.8 2.0

-0.06

-0.04

-0.02

0

h

n3

1.2 1.4 1.6 1.8 2.0

-0.06

-0.04

-0.02

0

Figure 5.4: The cost volumes for the dense stereo cue. 2D slices of the ρ−SAD cost
volumes along h and n3 at frames 490, 810 and 940 of Sequence 08 in the KITTI dataset.
In most cases, clear local extrema are obtained.

min
h,n

(1−ρ
−SAD). (5.7)

Note that the optimization only involves h, n1 and n3, since ‖n‖= 1. Enforcing

the norm constraint has marginal effect, since the calibration pitch is a good initialization

and the cost function usually has a clear local minimum in that vicinity, as shown for a

few examples in Fig. 5.4. The optimization requires about 10 ms per frame. The {h,n}
that minimizes (5.7) is the estimated ground plane from stereo cues.

5.2.2 Triangulated 3D Points

Next, we consider matched sparse SIFT [Low04] descriptors between frames k

and k+1, computed within the above region of interest (we find SIFT a better choice

than ORB for the low-textured road, and real-time performance is attainable for SIFT

in the small ROI). To fit a plane through the triangulated 3D points, one option is to

estimate {h,n} using a 3-point RANSAC for plane-fitting. However, in our experiments,

better results are obtained using the method of [GZS11], by assuming the camera pitch

to be fixed from calibration. For every triangulated 3D point, the height h is computed

using (5.1). The height difference ∆hi j is computed for every 3D point i with respect

to every other point j. The estimated ground plane height is the height of the point i

corresponding to the maximal score q, where

64

q = max
i

{
∑
j 6=i

exp
(
−µ∆h2

i j
)}

, with µ = 50. (5.8)

Note: Prior works such as [SS08,SCG13] decompose the homography G between frames

to yield the camera height [FL88]. However, in practice, the decomposition is very

sensitive to noise, which is a severe problem since the homography is computed using

noisy feature matches from the low-textured road. We also note that the homography

decomposition cannot be expected to perform better than the 3D points cue, since they

both rely on the same set of feature matches. Further, the fact that road regions may be

mapped by a homography is already exploited by our plane-guided dense stereo.

5.2.3 Object Detection Cues

We can also use object detection bounding boxes as cues when they are available,

for instance, within the object localization application. The ground plane pitch angle

θ can be estimated from this cue. Recall that n3 = sinθ , for the ground normal n =

(n1,n2,n3)
>.

From (7.2), given the 2D bounding box, we can compute the 3D height hb of an

object through the ground plane. Given a prior height h̄b of the object, n3 is obtained by

solving:

min
n3

(hb− h̄b)
2. (5.9)

The ground height h used in (7.2) is set to the calibration value to avoid incorpo-

rating SFM scale drift and n1 is set to 0 since it has negligible effect on object height.

Note: Object bounding box cues provide us unique long distance information, unlike

dense stereo and 3D points cues that only focus on a ROI close to our vehicle. An

inaccurate pitch angle can lead to large vertical errors for distant objects. Thus, the 3D

localization accuracy of far objects is significantly improved by incorporating this cue, as

shown in Sec. 7.6.1.

65

5.3 Data-Driven Cue Combination

We now propose a principled approach to combine the above cues while reflecting

the per-frame relative accuracy of each. The cues provided by the above methods are

combined in a Kalman filter framework significantly different from prior works. Naturally,

the combination should be influenced by both the visual input at a particular frame and

prior knowledge. We achieve this by learning models from training data to relate the

observation covariance for each cue to error behaviors of its underlying variables. During

testing, our learned models adapt each cue’s observation covariance on a per-frame basis.

The error distributions at every frame adapt the observation covariances using those

learned models, on a per-frame basis.

5.3.1 Training

For the dense stereo and 3D points cues, we use the KITTI visual odometry

dataset for training, consisting of F = 23201 frames. Sequences 0 to 8 of the KITTI

tracking dataset are used to train the object detection cue. To determine the ground truth

h and n, we label regions of the image close to the camera that are road and fit a plane to

the associated 3D points from the provided Velodyne data. No labelled road regions are

available or used during testing.

Each method i described in Sec. 5.2 has a scoring function fi that can be evaluated

for various positions of the ground plane variables π= {h,n}. The functions fi for stereo,

3D points and object cues are given by (5.7), (5.8) and (5.9), respectively.

Then, Algorithm 1 is a general description of the training.

Intuitively, the parameters ak
i of model A k

i reflect belief in the effectiveness of

cue i at frame k. Quantizing the parameters ak
i from F training frames into L bins allows

estimating the variance of observation error at bin centers cl
i . The model Ci then relates

these variances, vl
i , to the cue’s accuracy (represented by quantized parameters cl

i). Thus,

at test time, for every frame, we can estimate the accuracy of each cue i based purely on

visual data (that is, by computing ai) and use the model Ci to determine its observation

variance.

Now we describe the specifics for training the models A and C for each of the

66

Algorithm 1 Data-Driven Training for Cue Combination
for Training frames k = 1 : F do

• For various values of π = {h,n}, fit a model A k
i to observations (π, fi(π)).

Parameters ak
i of model A k

i reflect belief in accuracy of cue i at frame k. (For

instance, when A is a Gaussian, a can be its variance.)

• Compute error ek
i = |argminπ fi(π)−π∗k|, where the ground truth ground plane

in frame k is π∗k.

end for

• Quantize model parameters ak
i , for k = 1, · · · ,F , into L bins centered at c1

i , · · · ,cL
i .

• Histogram the errors ek
i according to quantized cl

i . Let vl
i be the bin variances of ek

i ,

for l = 1, · · · ,L.

• Fit a model Ci to observations (cl
i,v

l
i).

dense stereo, 3D points and object cues. We will use the notation that i∈ {s, p,d}, denote

the dense stereo, 3D points and object detection methods, respectively.

Dense Stereo

The objective of training is to find a model from extensive training data to relate

the observation covariance for each cue to error behavior of its underlying variables.

The error behavior of dense stereo between two consecutive frames is characterized by

variation in SAD scores between road regions related by the homography (5.6), as we

independently vary each variable h, n1 and n3. The variance of this distribution of SAD

scores represents the error behavior of the stereo cue with respect to its variables. Recall

that the scoring function for stereo, fs, is given by (5.7). Then a model is trained to relate

the observation covariance of the stereo method, σs, to σ ′s. In the following paragraph,

we explain these steps in detail. We assume that state variables are uncorrelated. Thus,

we will learn three independent models corresponding to h, n1, and n3.

Learning the model As: For a training image k, let {ĥk, n̂k} be the ground plane

estimated by the dense stereo method, by optimizing fs in (5.7). We first fix n1 = n̂k
1

and n3 = n̂k
3 and for 50 uniform samples of h in the range [0.5ĥk, 1.5ĥk], construct

homography mappings from frame k to k+1, according to (5.6) (note that R and t are

67

1 1.2 1.4 1.6 1.8 2
0.75

0.8

0.85

0.9

0.95

1

h

1
−

 ρ
−

S
A

D

Gaussian fitting
Raw data

−0.1 −0.05 0 0.05 0.1

0.78

0.8

0.82

0.84

0.86

n
1

1
−

 ρ
−

S
A

D

Gaussian fitting
Raw data

−0.1 −0.05 0 0.05 0.1
0.75

0.8

0.85

0.9

0.95

1

n
3

1
−

 ρ
−

S
A

D

Gaussian fitting
Raw data

1.4 1.6 1.8 2 2.2

0.7

0.75

0.8

0.85

0.9

0.95

h

1
−

 ρ
−

S
A

D

Gaussian fitting
Raw data

−0.1 −0.05 0 0.05 0.1

0.72

0.74

0.76

0.78

0.8

0.82

n
1

1
−

 ρ
−

S
A

D

Gaussian fitting
Raw data

−0.15 −0.1 −0.05 0 0.05 0.1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

n
3

1
−

 ρ
−

S
A

D

Gaussian fitting
Raw data

(a) h (b) n1 (c) n3

Figure 5.5: Examples of 1D Gaussian fits to estimate parameters ak
s for h, n1 and n3 of

the dense stereo method respectively.

already estimated by monocular SFM, up to scale). For each homography mapping,

we compute the SAD score fs(h) using (5.7). A univariate Gaussian is now fit to the

distribution of fs(h). Its variance, ak
s,h, captures the sharpness of the SAD distribution,

which reflects belief in accuracy of height h estimated from the dense stereo method

at frame k. The k in σ ′ks,h stands for frame k, the s indicates stereo (between frame k

and frame k+1) and h means the curve is fitted between the value 1−ρ−SAD and h. A

similar procedure yields variances ak
s,n1

and ak
s,n3

corresponding to orientation variables.

Example fits are shown in Fig. 5.5. Referring to Algorithm 1 above, ak
s,h, ak

s,n1
, ak

s,n3
are

precisely the parameters ak
s that indicate accuracy of the stereo cue at frame k.

Learning the model Cs: For frame k, let ek
s,h = |ĥ

k−h∗k | be the error in ground

height, relative to ground truth. We also have a parameter ak
s,h at frame k. We quantize

the parameters ak
s,h into L = 100 bins and consider the resulting histogram of ek

s,h. The

bin centers cl
s,h are positioned to match the density of ak

s,h (that is, we distribute F/L

errors ek
s,h within each bin). A similar process is repeated for n1 and n3. The histograms

for the KITTI dataset are shown in Fig. 5.6. We have now obtained the cl
s of Algorithm 1.

Next, we compute the variance vl
s,h of the errors within each bin l, for l = 1, · · · ,L.

68

0 0.5 1 1.5
0

1000

2000

3000

a
s, h

F
re

qu
en

cy

0 0.03 0.06 0.1
0

500

1000

1500

a
s, n1

F
re

qu
en

cy

0 0.03 0.06 0.1
0

500

1000

1500

a
s, n3

F
re

qu
en

cy

(a) h (b) n1 (c) n3

Figure 5.6: Histograms of errors ek
s from dense stereo cue against the quantized accuracy

parameters as of model As, for h, n1 and n3.

0 0.1 0.2

3

4

5

6

7
x 10

−3

c
s,h

v s,
h

0.02 0.033 0.046 0.06

6

8

10

12

x 10
−5

c
s,n1

v s,
n1

0 0.013 0.033 0.05

6

8

10

x 10
−5

c
s,n3

v s,
n3

(a) h (b) n1 (c) n3

Figure 5.7: Fitting a model Cs to relate observation variance vs to the belief in accuracy
cs of dense stereo, for h, n1 and n3.

This indicates the observation error variance. We now fit a curve to the distribution

of vs,h versus cs,h, which provides a model to relate observation variance in h to the

effectiveness of dense stereo. The result for the KITTI dataset is shown in Fig. 5.7, where

each data point represents a pair of observation error covariance vl
s,h and parameter cl

s,h.

Empirically, we observe that a straight line suffices to produce a good fit. A similar

process is repeated for n1 and n3. Thus, we have obtained models Cs (one each for h, n1

and n3) for the stereo method.

3D Points

Similar to dense stereo, the objective of training is again to find a model that

relates the observation covariance of the 3D points method to the error behavior of its

69

0 100 200 300
0

500

1000

a
p, h

F
re

qu
en

cy

0 50 100 150
0.008

0.01

0.012

0.014

0.016

c
p, h

v p,
 h

Figure 5.8: Histogram of height error of the 3D points cue. (Left) Histogram of height
error versus plane fitting cost qp,h in (5.8). (Right) Line fit to the distribution of error
variance σp,h against cost qp,h, for the entire KITTI training set.

underlying variables. Recall that the scoring function fp is given by (5.8).

Learning the model Ap: We observe that the score q returned by fp is directly

an indicator of belief in accuracy of the ground plane estimated using the 3D points cue.

Thus, for Algorithm 1, we may directly obtain the parameters ak
p = qk, where qk is the

optimal value of fp at frame k, without explicitly learning a model Ap.

Learning the model Cp: The remaining procedure mirrors that for the stereo

cue. Let ĥk
p be ground height estimated at frame k using 3D points, that is, the optimum

for (5.8). The error ek
p,h is computed with respect to ground truth. The above ak

p,h are

quantized into L = 100 bins centered at cl
p,h and a histogram of observation errors ek

p,h is

constructed. A model Cp may now be fit to relate the observation variances vl
p,h at each

bin to the corresponding accuracy parameter cl
p,h. As shown in Fig. 5.8, a straight line fit

is again reasonable.

Object Detection

We assume that the detector provides several candidate bounding boxes and their

respective scores (that is, bounding boxes before the nonmaximal suppression step of

traditional detectors). A bounding box is represented by b = (x,y,w,hb)
>, where x,y

is its 2D position and w,hb are its width and height. The error behavior of detection is

quantified by the variation of detection scores α with respect to bounding box b.

Learning the model Ad: Our model A k
d is a mixture of Gaussians. At each

70

0 200 400 600 800 1000 1200
−1

0

1

2

3

4

Detection Bounding Boxes

D
et

ec
tio

n
S

co
re

Detection Score
Mixture of Gaussian

0 200 400 600 800 1000
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Detection Bounding Boxes

D
et

ec
tio

n
S

co
re

Detection Score
Mixture of Gaussian

0 200 400 600 800 1000
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Detection Bounding Boxes

D
et

ec
tio

n
S

co
re

Detection Score
Mixture of Gaussian

Figure 5.9: Examples of mixture of Gaussians fits to detection scores. Note that our
fitting (red) closely reflects the variation in noisy detection scores (blue). Each peak
corresponds to an object.

frame, we estimate 4×4 full rank covariance matrices Σm centered at µm, as:

min
Am,µm,Σm

N

∑
n=1

(
M

∑
m=1

Ame−
1
2εmnΣ

−1
m εmn−αn

)2

, (5.10)

where εmn = bn−µm, M is number of objects and N is the number of candidate

bounding boxes (the dependence on k has been suppressed for convenience). Due to

highly irregular data, the traditional EM method doesn’t work. Instead, we seek to solve

this problem as a non-linear optimization problem. Example fitting results are shown

Fig. 5.9. It is evident that the variation of noisy detector scores is well-captured by the

model A k
d .

Recall that the scoring function fd of (5.9) estimates n3. Thus, only the entries of

Σm corresponding to y and hb are significant for our application. Let σy and σhb be the

corresponding diagonal entries of the Σm closest to the tracking 2D box. We combine

them into a single parameter, ak
d =

σyσhb
σy+σhb

, which reflects our belief in the accuracy of

this cue.

Learning the model Cd: The remaining procedure is similar to that for the

stereo and 3D points cues. The accuracy parameters ak
d are quantized and related to the

corresponding variances of observation errors, given by the fd of (5.9). The fitted linear

model Cd that relates observation variance of the detection cue to its expected accuracy

is shown in Fig. 5.10.

71

0 1000 2000
0

50

100

150

a
d

F
re

qu
en

cy

0 500 1000 1500 2000
0

1

2

3

4x 10
−4

c
d

v d

Figure 5.10: Histogram of height error of the 3D points cue. (Left) Histogram of height
error versus plane fitting cost qp,h in (5.8). (Right) Line fit to the distribution of error
variance σp,h against cost qp,h, for the entire KITTI training set.

5.3.2 Testing

During testing, at every frame k, we fit a model Ak
i corresponding to each cue

i ∈ {s, p,d} and determine its parameters ak
i that convey expected accuracy. Next, we

use the models Ci to determine the observation variances corresponding to the expected

accuracy.

Dense Stereo The observation zk
s = (nk

1,n
k
3,h

k)> at frame k is obtained by mini-

mizing fs, given by (5.7). We fit 1D Gaussians to the homography-mapped SAD scores

to get the values of ak
s,h, ak

s,n1
and ak

s,n3
. Using the models Cs estimated in Fig. 5.7, we

predict the corresponding variances vk
s . The observation covariance for the dense stereo

method is now available as Uk
1 = diag(vk

s,n1
,vk

s,n3
,vk

s,h).

3D Points At frame k, the observation zk
p is the estimated ground height h obtained

from fp, given by (5.8). The value of qk obtained from (5.8) directly gives us the expected

accuracy parameter ak
p. The corresponding variance vk

p,h is estimated from the model Cp

of Fig. 5.8. The observation covariance for this cue is now available as Uk
p = vk

p,h.

Object Detection At frame k, the observation zk,m
d is the ground pitch angle n3

obtained by minimizing fd , given by (5.9), for each object m = 1, · · · ,M. For each object

m, we obtain the parameters ak,m
d after solving (5.10). Using the model Cd of Fig. 5.10,

we predict the corresponding error variances vk,m
d . The observation covariances for this

method are now given by Uk,m
d = vk,m

d .

Fusion Finally, the adaptive covariance for frame k, Uk, is computed by combin-

72

ing Uk
s , Uk

p and the Uk,m
d from each object m. Then, our adaptive ground plane estimate

zk is computed by combining zk
s , zk

p and zk,m
d , using (5.5).

In [SC14], we used a cross validation mechanism between dense stereo cue and

3D points cue to reject outliers. That is, we only used the fused height estimate to update

the Kalman filter when both the cues are available and the estimates of them are close

to each other. However we found that the 3D points cue is much worse than the dense

stereo cue. Eliminating good estimates from dense cue just because the 3D points cue

is bad seems a waste. In this work, we allow the system to use dense stereo cue solely

when we believe it is well converged.

Thus, we have described a ground plane estimation method that uses models

learned from training data to adapt the relative importance of each cue – stereo, 3D points

and detection bounding boxes – on a per-frame basis.

The entire procedure is summarized in Figure 5.11, which specifically lists the

cues, models and learned observation covariances illustrated in Figure 5.1.

This chapter is based on “Robust Scale Estimation in Real-Time Monocular SFM

for Autonomous Driving”, by Shiyu Song, Manmohan Chandraker, as it appears in pro-

ceedings of Computer Vision and Pattern Recognition (CVPR), 2014 IEEE International

Conference on, June 24-27 2014, Columbus, Ohio.

This chapter in part, has been submitted for publication, as it may appear in “High

Accuracy Monocular SFM and Scale Correction for Autonomous Driving”, by Shiyu

Song, Manmohan Chandraker, Clark C. Guest, in IEEE Transactions on Pattern Analysis

and Machine Intelligence.

73

Stereo Dense

3D Points

Trained
Model 1

Trained
Model 2

Kalman Filter
Fusion

h, as, h

n1, as, n1

n3, as, n3

h, ap, h

h, vs, h

n1, vs, n1

n3, vs, n3

h, vp, h
h, n1, n3

Optimal

Object Det Trained
Model 3

n3, ad, n3 n3, vd, n3

Figure 5.11: Adaptive cue combination framework with specific details. For each frame,
(h,as,h) (n1,as,n1) and (n3,as,n1) are estimated for the dense stereo method, (h,ap,h) for
the 3D points method and (n3,ad,h) for the objection detection method. In each tuple,
the first element is one of the variables influencing the estimation, while the other is a
quantitative representation of the error behavior due to that variable. The trained models
in Figures 5.7, 5.8 and 5.10 are used to get the observation covariances vs,h, vs,n1 , vs,n3 ,
vp,h and vd,n3 from as,h, as,n1 , as,n1 , ap,h and ad,n3 . Finally, a Kalman filter fuses the
observations and their covariances to yield optimal estimations.

Chapter 6

Results of Monocular Visual Odometry

We present extensive evaluation on the state-of-art KITTI dataset [GLU12],

which consists of nearly 50 km of real-world driving in 22 sequences, covering urban,

residential, country and highway roads. Speeds varying from 0 to 90 kmph, a low frame

rate of 10 Hz and frequent presence of other cars pose additional challenges. We also

show results on the publicly available Hague dataset [DG09], which is challenging due

to low resolution and multiple objects.

The evaluation metrics are provided by Geiger et al. [GLU12], based on an

extension of those proposed by Kümmerle et al. in [KSD+09]. Rotation and translation

errors are reported as averages of all relative transformations at a fixed distance, as

well as functions of various subsequence lengths and vehicle speeds. For timings, our

experiments are performed on a laptop with Intel Core i7 2.40 GHz processor with 8GB

DDR3 RAM and 6M cache. The main modules occupy three parallel threads as depicted

in Sections 4.1–4.2, while ground detection for scale correction occupies two threads of

its own.

In consideration of real-time performance, only the dense stereo and 3D points

cues are used for monocular SFM. Detection bounding box cues are used for the object

localization application where they are available. Note that, when detection bounding

box cues are available, it only improves ground orientation, it can not harm SFM. 3D

object localization is demonstrated using object detection and tracked bounding boxes

computed offline using [PRF11].

74

75

6.1 Benchmark Monocular Visual Odometry on KITTI

The visual odometry evaluation sequences in KITTI are 11–21, for which ground

truth is not public. Our system’s performance for these sequences is accessible from

the KITTI evaluation webpage 1, under the name MLM-SFM. Figure 6.1 shows the

performance of our system, with average rotation and translation errors reported over

various subsequence lengths from 5 to 400 meters and speeds from 5 to 90 kmph. Note

that all the other systems, with the exception of VISO2-M [GZS11], are stereo, yet we

achieve close to the best rotation accuracy. Our translation errors are lower than several

stereo systems and far lower than VISO2-M.

6.2 Accuracy and Robustness of Monocular SFM

Another important benefit of our ground plane estimation is enhanced robustness.

As demonstration, we run 50 trials of our system on Seq 0−10, as well as stereo and

monocular systems associated with the dataset, VISO2-S and VISO2-M [GZS11]. Errors

relative to ground truth are computed using the metrics in [GLU12]. Average errors

over Seq 0–10 are shown in Table 6.1. Note our vast performance improvement over

VISO2-M, a rotation error better than VISO2-S and a low translation error also slightly

better than stereo. The only sequences where we encounter high errors are 1 and 7. The

former is an extended highway sequence at speeds of 90 kmph with repeated textures,

while the latter has a segment where a large truck occludes over 70% of the image (see

Figure 6.2). Our monocular SFM system currently relies only on low-level features,

however, our future work integrates lane and object detection which can allow handling

such scenarios.

In Figure 6.3 and 6.4, we show the reconstructed trajectories from our monocular

SFM with adaptive ground plane estimation, the monocular system of VISO2-M that

only uses 3D points and the stereo system VISO2-S [GZS11], for eight other sequences

from the KITTI dataset, besides the two shown in Figure 1.5. All the trajectories are

shown in blue, compared to ground truth shown in red. Note the high accuracy of our

monocular system relative to ground truth, comparable to a stereo system and far more

1www.cvlibs.net/datasets/kitti/eval_odometry.php

www.cvlibs.net/datasets/kitti/eval_odometry.php

76

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 100 200 300 400 500 600 700 800

R
o

ta
ti
o

n
 E

rr
o

r
[d

e
g

/m
]

Path Length [m]

Rotation Error

(a) Rot. error across distances

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 100 200 300 400 500 600 700 800

T
ra

n
s
la

ti
o

n
 E

rr
o

r
[%

]

Path Length [m]

Translation Error

(b) Trans. error across distances

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 10 20 30 40 50 60 70 80 90

R
o
ta

ti
o
n
 E

rr
o
r

[d
e
g
/m

]

Speed [km/h]

Rotation Error

(c) Rot. error across speeds

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 10 20 30 40 50 60 70 80 90

T
ra

n
s
la

ti
o
n
 E

rr
o
r

[%
]

Speed [km/h]

Translation Error

(d) Trans. error across speeds

Figure 6.1: Evaluation results on the KITTI benchmark, for rotation and translation
errors over various distances and speeds.

77

Table 6.1: Comparison of rotation and translation errors for our system versus other
state-of-the-art stereo and monocular systems. The values reported are statistics over 50
trials and demonstrate the robustness of our system. Note that our translation and rotation
errors are lower than stereo VISO2-S, and much better than VISO2-M.

Seq Frms
VISO2-S (Stereo)

Rot σ2
R Trans σ2

T
(deg/m) (%)

0 4540 0.0109 7.06E-08 2.32 0.00323
2 4660 0.00736 3.27E-08 2.01 0.00174
3 800 0.0107 2.3E-07 2.32 0.0125
4 270 0.00807 8.75E-07 0.99 0.00295
5 2760 0.00976 3.77E-08 1.78 0.0019
6 1100 0.00716 1.56E-07 1.17 0.00466
8 4070 0.0104 6.58E-08 2.35 0.00375
9 1590 0.00938 1.56E-07 2.36 0.00719

10 1200 0.00857 4.35E-07 1.37 0.0112
Avg 0.009379 2.057332

Seq Frms
VISO2-M (Monocular)

Rot σ2
R Trans σ2

T
(deg/m) (%)

0 4540 0.0209 3.03E-06 11.91 0.0888
2 4660 0.0114 3.16E-07 3.33 0.0155
3 800 0.0197 6.79E-06 10.66 0.515
4 270 0.00927 3.08E-06 7.4 0.00957
5 2760 0.0328 3.2E-06 12.67 0.106
6 1100 0.0157 1.26E-06 4.74 0.0998
8 4070 0.0203 1.05E-06 13.94 0.102
9 1590 0.0143 2.29E-06 4.04 0.0842

10 1200 0.0388 1.33E-05 25.2 3.22
Avg 0.020295 10.18093

Seq Frms
Our Results (Monocular)

Rot σ2
R Trans σ2

T
(deg/m) (%)

0 4540 0.00476 1.08E-06 2.04 0.114
2 4660 0.00354 5.68E-08 1.5 0.0135
3 800 0.00213 1.05E-07 3.37 0.285
4 270 0.00234 4.93E-07 1.43 0.372
5 2760 0.00378 6.56E-06 2.19 0.195
6 1100 0.00813 1.85E-05 2.09 0.687
8 4070 0.00442 3.81E-07 2.37 0.0534
9 1590 0.00466 5.78E-07 1.76 0.0326

10 1200 0.00848 0.000102 2.12 1.27
Avg 0.004545 2.032654

78

Figure 6.2: Example of failure scenarios. Example frames from Seq 01 and 07 with
repeated features and serious interference from obstacles. These are situations that our
system, which relies purely on SFM, is not designed to handle.

accurate than the prior monocular works. Also notice that our rotation error is lower

than stereo, which has significant impact on long-range location error. This performance

is enabled by our system architectural innovations and ground plane estimation, which

combines multiple cues and adapts their relative weights to reflect per-frame uncertainties

in visual data using models learned from training data.

6.3 Accuracy of Ground Plane Estimation

The performance of our monocular SFM is significantly better than [SCG13],

since we successfully complete KITTI test sequences 11–21. Ground plane estimation

that combines cues in a rigorous Kalman filter and adaptively computes fusion covariances

is key to achieving our robust performance.

Fig. 6.5 shows examples of error in ground plane height relative to ground truth

using 3D points and stereo cues individually, as well as the output of our combination.

Each cue and the combination are implemented within a Kalman filter. Note that while

79

 0

 200

 400

 600

 800

-200 0 200 400 600 800

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

 0

 200

 400

 600

 800

 1000

-200 0 200 400 600 800

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

 0

 200

 400

 600

 800

-200 0 200 400 600 800

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

-100

 0

 100

 200

 300

 0 100 200 300 400 500

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

-100

 0

 100

 200

 300

 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

-100

 0

 100

 200

 300

 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

-100

 0

 100

 200

 300

 400

-200 -100 0 100 200

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

-100

 0

 100

 200

 300

 400

-300 -200 -100 0 100 200

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

-100

 0

 100

 200

 300

 400

-200 -100 0 100 200

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

-100

 0

 100

 200

 300

-200 -100 0 100 200

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

-100

 0

 100

 200

 300

-200 -100 0 100 200

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

-100

 0

 100

 200

 300

-200 -100 0 100 200

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

(a) Our System (b) VISO2-Mono [GZS11] (c) VISO2-Stereo [GZS11]

Figure 6.3: Reconstructed trajectories from sequences in the KITTI training dataset
(with ground truth). Also see trajectories in Figure 1.5. (a) Our monocular SFM yields
camera trajectories close to the ground truth over several kilometers of real-world driving.
(b) Our monocular SFM significantly outperforms prior works that also use the ground
plane for scale correction. (c) Our performance is comparable to stereo SFM.

80

-200

-100

 0

 100

 200

 300

 400

 500

 600

-400 -300 -200 -100 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

-400

-200

 0

 200

 400

 600

-400 -200 0 200 400 600

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

-200

-100

 0

 100

 200

 300

 400

 500

 600

-400 -300 -200 -100 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

 0

 100

 200

 300

 400

 500

-200 -100 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

 0

 100

 200

 300

 400

 500

-100 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

 0

 100

 200

 300

 400

 500

-200 -100 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

-300

-200

-100

 0

 100

 200

 300

 400

 0 100 200 300 400 500 600 700

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

-400

-300

-200

-100

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500 600 700 800 900

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

-300

-200

-100

 0

 100

 200

 300

 400

 0 100 200 300 400 500 600 700

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

-200

-100

 0

 100

 200

 300

 400

-300 -200 -100 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

-400

-300

-200

-100

 0

 100

 200

 300

 400

 500

-400 -300 -200 -100 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

-300

-200

-100

 0

 100

 200

 300

 400

-300 -200 -100 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

(a) Our System (b) VISO2-Mono [GZS11] (c) VISO2-Stereo [GZS11]

Figure 6.4: Reconstructed trajectories from sequences in the KITTI training dataset
(with ground truth). Also see trajectories in Figure 1.5. (a) Our monocular SFM yields
camera trajectories are close to the ground truth over several kilometers of real-world
driving. (b) Our monocular SFM significantly outperforms prior works that also use the
ground plane for scale correction. (c) Our performance is comparable to stereo SFM.

81

700 720 740 760 780 800
0

5

10

15

20

Frame Index

H
ei

gh
t e

rr
or

 (
%

)

Adaptive + Dense + 3D Pts
Dense
3D Points

900 920 940 960 980 1000
0

5

10

15

20

Frame Index

H
ei

gh
t e

rr
or

 (
%

)

Adaptive + Dense + 3D Pts
Dense
3D Points

Figure 6.5: Height error relative to ground truth over (left) Seq 2 and (right) Seq 5. The
effectiveness of our data fusion is shown by less spikiness in the filter output and a far
lower error.

individual methods are very noisy, our cue combination allows a much more accurate

estimation than either.

Next, we demonstrate the advantage of cue combination using the data-driven

framework of Sec. 5.3 that uses adaptive covariances, as opposed to a traditional Kalman

filter with fixed covariances. For this experiment, the fixed covariance for the Kalman

filter is determined by the error variances of each variable over the entire training set (we

verify by cross-validation that this is a good choice).

In Fig. 6.6, using only sparse feature matches causes clearly poor performance

(black curve). The dense stereo performs better (cyan curve). Including the additional

dense stereo cue within a Kalman filter with fixed covariances leads to an improvement

(blue curve). However, using the training mechanism of Sec. 5.3 to adjust per-frame

observation covariances in accordance with the relative confidence of each cue leads to a

further reduction in error by nearly 1% (red curve). Fig. 6.6(b) shows that we achieve

the correct scale at a rate of 75 – 100% across all sequences, far higher than the other

methods.

In particular, compare our output (red curves) to that of only 3D points (black

curves). This represents the improvement by this approach over prior works such

as [SCG13, GZS11, SS08] that use only sparse feature matches from the road surface.

82

0 2 4 6 8 10
2

4

6

8

10

12

14

16

18

Sequence Number

H
ei

gh
t e

rr
or

 (
%

)

Adapt + Dense + 3D Pts
Fixed + Dense + 3D Pts
Dense
3D Points

0 2 4 6 8 10
0

20

40

60

80

100

Sequence Number

P
er

ce
nt

 fr
am

es
 w

ith
in

 7
%

 o
f G

T

Adapt + Dense + 3D Pts
Fixed + Dense + 3D Pts
Dense
3D Points

(a) Height error (b) Success rate

Figure 6.6: Error and robustness of our ground plane estimation. (a) Average error in
ground plane estimation across Seq 0-10. (b) Percent number of frames where height
error is less than 7%. Note that the error in our method is far lower and the robustness far
higher than achievable by either method on its own.

6.4 Effectiveness of Ground Plane Estimation

In this section, we demonstrate the effectiveness of our ground plane estimation

by integrating with another publicly available monocular SFM system, VISO2-M. It

relies on computing relative pose between all consecutive pairs of frames through a

fundamental matrix estimation and uses continuous scale correction against a locally

planar ground. This system architecture has the advantage of simplicity and robustness.

Theoretically, it can not break down, since it does not intend to build long feature tracks,

but the resulting disadvantage of low accuracy has been shown in Section 6.2. In this

section, we show that our ground plane estimation can significantly improve accuracy of

VISO2-M, demonstrating our potential to improve other monocular SFM systems.

We replaced VISO2-M’s ground plane estimation with ours (Chapter 5), keeping

everything else the same. KITTI training dataset are used for testing. Again, errors

relative to ground truth are computed using the metrics in [GLU12]. Error rates are

shown in Table 6.2. The method replacing VISO2-M’s ground plane estimation with

ours is under the name “VISO2-M + Our GP” (right column). Note the translation

error is improved by over 4% from 12.4% to 8.15%. Comparing the error numbers of

83

Table 6.2: The effectiveness of our ground plane estimation is demonstrated by replacing
VISO2-M’s ground plane estimation module with ours. The new method “VISO2-M +
Our GP” achieves over 4% better translation error.

Seq Frms
VISO-M VISO-M + Our GP

Rot Trans Rot Trans
(deg/m) (%) (deg/m) (%)

0 4540 0.0209 11.9 0.0206 6.57
1 1100 0.0735 37.9 0.0746 30.4
2 4660 0.0114 3.33 0.0114 2.73
3 800 0.0197 10.7 0.0192 5.67
4 270 0.0093 7.40 0.0087 1.49
5 2760 0.0328 12.7 0.0333 7.63
7 1100 0.1021 28.2 0.1020 22.6
6 1100 0.0157 4.74 0.0156 4.47
8 4070 0.0203 13.9 0.0203 6.64
9 1590 0.0143 4.04 0.0145 3.04

10 1200 0.0388 25.2 0.0379 21.3
Avg 0.0267 12.4 0.0267 8.15

“VISO2-M + Our GP” with our system’s from Table 6.1 demonstrates the effectiveness

of our monocular system architecture as well.

The performance of “VISO2-M + Our GP” for KITTI testing dataset is also

accessible from the KITTI evaluation webpage2, under the name VISO2-M + GP. Note

that the translation error improves by over 4% from 11.94% to 7.46%, compared to the

original method VISO2-M.

6.5 Effectiveness of Our SFM Architecture

To further demonstrate the effectiveness of our monocular SFM architecture

discussed in Section 4.1 and 4.2, we compare our raw SFM performance (without the

scale correction of our ground plane estimation) with another well-known SFM system,

EKFMonoSLAM [CGDM10]. KITTI odometry dataset Seq 00 - 10 and the metrics

in [GLU12] are again used. However, EKFMonoSLAM only successfully finishes three

relatively short sequences 03, 04 and 06. The error rates are shown in Table 6.3. The

middle column “Our SFM + no GP” shows the error numbers of our system without

2www.cvlibs.net/datasets/kitti/eval_odometry.php

www.cvlibs.net/datasets/kitti/eval_odometry.php

84

Table 6.3: The effectiveness of our monocular SFM architecture is demonstrated by
comparing the raw SFM performance (without the scale correction of our ground plane
estimation) with the state-of-the-art SFM system, EKFMonoSLAM [CGDM10]. Our
raw translation error is 10% better than EKFMonoSLAM.

Seq
EKFMonoSLAM Our SFM wo GP Our System

Rot Trans Rot Trans Rot Trans
(deg/m) (%) (deg/m) (%) (deg/m) (%)

3 0.014 16.4 0.002 9.66 0.002 3.37
4 0.010 11.6 0.003 2.40 0.002 1.43
6 0.040 27.0 0.013 14.4 0.008 2.09

Avg 0.027 21.2 0.008 11.2 0.005 2.48

enabling the scale drift correction based on the ground plane estimation of Chapter 5.

The translation error is higher compared to our full system in the third column, but it is

still 10% better than EKFMonoSLAM.

6.6 Real-time Performance

To illustrate our assertion that the system returns real-time pose at an average

of 30 fps and a worst-case timing of 50 ms per frame, Figure 6.7 provides the timing

graphs of the system on two sequences. In particular, note that the insertion of keyframes,

triggering bundle adjustments or error-correcting mechanisms do not result in significant

spikes in our timings, which is in contrast to several contemporary real-time systems.

We also observe that keyframes are inserted once in about 5 and 6 frames for

sequences 08 and 05, respectively. This is expected since a fast moving vehicle will

demand new 3D points from the epipolar update module at frequent intervals. It does not

affect the performance of our system since the global bundle adjustment triggered after

a keyframe finishes before the next frame’s pose computation and runs in parallel to it.

In fact, keyframe insertion is an opportunity to introduce long-range constraints in the

optimization (so long as the epipolar update module can return long enough tracks). Thus,

to ensure speed and accuracy, it is crucial for a multithreaded visual odometry system to

not only have a well-designed keyframe architecture, but also to have its various modules

such as pose estimation, epipolar search and various bundle adjustments operating in

optimal conjunction with each other.

85

(a) Sequence 05 (b) Sequence 08

Figure 6.7: The runtimes of our system for various types of frames. Blue denotes a
steady state frame, red denotes a keyframe, magenta the frame after a keyframe and
green denotes a firewall insertion. The black line is the average time per frame, which
corresponds to 33.7 fps for sequence 05 and 34.9 fps for sequence 08.

6.7 Monocular SFM on an Additional Public Dataset

We show additional results on the publicly available “The Hague” dataset [DG09].

It consists of three sequences of varying lengths, from 600 m to 5 km. The dataset is

challenging due to low resolution 640×480 images, as well as several obstacles due to

crowded scenes and moving vehicles close to the camera.

Accurate scale drift correction using the adaptive ground plane estimation of

Section 5.2 trained by KITTI dataset allows us to successfully and accurately complete

such challenging sequences, in contrast to prior state-of-the-art in monocular SFM. For

instance, there are many crowded scenes or long stops in Hague 3 when the system may

encounter scale drifts. However, our scale correction that combines cues from sparse

3D points and dense stereo, adapting observation covariances at every frame to reflect

relative uncertainties, allows correct scale to be maintained even through such events.

In the absence of ground truth, Table 6.4 reports figures for loop closure or

end-point error. Just like our results on the KITTI dataset, these error rates represent a

significant improvement over those attainable by prior monocular state-of-the-art and are

comparable to state-of-the-art stereo systems.

The reconstructed trajectories for some of the sequences, along with ground truth

86

Table 6.4: End-point errors in The Hague dataset. These error rates represent a significant
improvement over those attainable by prior monocular state-of-the-art and are comparable
to state-of-the-art stereo systems.

Sequence Images Length (m) Error (m) Error (%)
1 2500 609.34 32.72 5.37
2 3000 834.39 16.60 1.99
3 19000 5045.45 244.57 4.85

-350

-300

-250

-200

-150

-100

-50

 0

 50

-100 -50 0 50 100 150 200 250 300

z
x

Visual Odometry
Sequence Start

Ground truth trajectory (834 meters) Reconstruction (top view)

Reconstruction (side view)

Figure 6.8: The reconstructed trajectories for Seq 2 in Hague dataset, along with ground
truth overlays on an aerial map

overlays on an aerial map, are shown in Figures 6.8 and 6.9. Note the excellent rotation

handling of our system, as well as the ability to maintain correct scale through long

sequences.

This chapter in part, has been submitted for publication, as it may appear in “High

Accuracy Monocular SFM and Scale Correction for Autonomous Driving”, by Shiyu

Song, Manmohan Chandraker, Clark C. Guest, in IEEE Transactions on Pattern Analysis

and Machine Intelligence.

87

-500

 0

 500

 1000

 1500

-1500 -1000 -500 0 500

z

x

Visual Odometry
Sequence Start

Ground Truth Trajectory (5045 meters) Reconstruction (top view)

Reconstruction (side view)

Figure 6.9: The reconstructed trajectories for Seq 3 in Hague dataset, along with ground
truth overlays on an aerial map

Chapter 7

Monocular Object Localization

The novel ground plane estimation in Chapter 5 not only improves the SFM

system by providing a correction in scale, but also can significantly benefits the localiza-

tion accuracy for those monocular systems that localizes the objects through a ground

plane. We present a framework for highly accurate 3D localization of objects like cars

in autonomous driving applications, using a single camera. Our localization framework

jointly uses information from complementary modalities like structure from motion

(SFM) and object detection, combined through an adaptively estimated ground plane, to

achieve high localization accuracy in both near and far fields. This is in contrast to prior

works that rely on triangulating detector outputs against a fixed ground plane, or motion

segmentation based on sparse feature tracks. To extract SFM cues, we demonstrate the

need for and an efficient implementation of dense tracking to handle fast-moving objects

like cars whose images are small and low in texture. Rather than completely commit

to tracklets generated by a 2D tracker, we make novel use of raw detection scores to

allow our 3D bounding boxes to adapt to better quality 3D cues. Our formulation for

3D localization is efficient and can be regarded as an extension of bundle adjustment to

incorporate object detection cues. Experiments on the KITTI dataset show the efficacy of

each of our cues (3D points, adaptive ground plane and object detection bounding boxes),

as well as the accuracy and robustness of our 3D object localization relative to ground

truth.

88

89

7.1 Introduction

The rapid advent of autonomous driving technologies has introduced the need for

highly accurate 3D localization of objects like cars in real-world driving scenarios. The

applications of real-time object localization range from driver safety, to danger prediction,

to better understanding of traffic scenes. This chapter presents a framework for 3D object

localization that combines cues from structure from motion (SFM), object detection and

ground plane estimation to achieve excellent performance in real-world driving, using

only monocular video as input.

The key to our accurate 3D object localization is the novel joint optimization

framework of Section 7.4 that explicitly accounts for SFM and object detection being

complementary modalities for scene understanding. Monocular SFM cues consist of 3D

points on the object and a per-frame estimate of the ground plane, while detection cues

include bounding boxes and detector scores. The mutual interactions of these cues is

judiciously governed by our joint optimization to exploit their relative strengths.

Intuitively, SFM can estimate accurate 3D points on nearby objects, but suffers

due to the low resolution of those far away. On the other hand, bounding boxes from

object detection are obtainable for distant objects, but are often inconsistent with the 3D

scene in the near field. Thus, we seek 3D bounding boxes that are most consistent with

2D tracked ones, while also maximizing the alignment of estimated object pose with

tracked 3D points (Figure 7.1).

Another example of such interaction is between the object bounding boxes and

the ground plane. Each independently moving object in monocular SFM may at best

be estimated up to an unknown scale factor. The contact of a 2D bounding box with

the ground plane provides a cue to resolve this scale. On the other hand, the fact that

3D bounding boxes lie on the ground can in turn be used to improve the accuracy of

the ground plane estimation. Our ground plane is estimated at every frame, as opposed

to prior works that use a fixed one for 3D localization [CS10, ELSVG09, WWR+13].

In contrast, we note that both object position and size are closely related to the ground

plane, and so must be jointly estimated. This is especially important for far objects, since

small errors in ground orientation can lead to large 3D errors at greater distances. Thus,

incorporation of SFM cues in the form of an estimated ground plane is also beneficial for

90

Figure 7.1: Sample output of the 3D object localization framework. We demonstrate a
3D object localization framework that combines cues from SFM, detection bounding
boxes and an adaptively estimated ground plane. Cyan denotes 2D bounding boxes,
the green line is the horizon from estimated ground plane, red denotes estimated 3D
localization for far and near objects, with distances in magenta. Notice that for the
closest object, the 3D bounding box is accurate even though the 2D one is not. This is an
example of the effectiveness of our joint optimization, that incorporates SFM cues and
raw detection scores.

far objects.

Our system is designed for real-time application, and so must eschew complex

scene understanding approaches that seek joint solutions for SFM, object tracking, and

localization. Rather, those are sequential operations, so inaccuracies in earlier stages

must be compensated. The input to 3D object localization are 2D tracklets from tracking-

by-detection, which are often noisy and poorly localized. To handle such tracks, Section

7.4.3 proposes a method to incorporate raw detection scores in our joint optimization,

while avoiding the prohibitive cost of evaluating the detector model for every possible 3D

bounding box and object pose configuration. This allows us to efficiently find detection

bounding boxes with high scores that are more consistent with 3D geometry, rather

than being confined to estimating the best fit to the output of a 2D tracker. Thus, our

framework can be considered an extension of traditional SFM bundle adjustment to also

incorporate object cues such as 2D bounding boxes and detection scores.

An important aspect of our object localization is the use of 3D points as SFM

cues. In order to obtain reliable 3D points on objects such as cars that occupy a small

window in the image and are low in texture, we propose a dense tracking mechanism

in Section 7.5. Rather than rely on few and unstable sparse feature matches, we use

an intensity alignment approach for pose estimation. The computed pose can provide

epipolar constraints to guide a TV-L1 optical flow [WPB+08] and reduce the 2D search

91

to 1D, which allows gains in both speed and accuracy. Further, accurate dense tracks

added through this mechanism prevent the system from catastrophic breakdown, as

would happen if too few sparse features are available for a traditional PnP-based pose

estimation.

We show in Section 7.6 that combining cues from SFM and object detection

through the adaptive ground plane significantly improves 3D localization for both near

and distant objects. The benefit of our cue combination is available even for more

comprehensive monocular scene understanding frameworks such as [CS10, WWR+13].

We demonstrate this in Section 7.6 by using the object tracking of [CS10] within our joint

localization framework, to achieve over 5% improvement in 3D localization (evaluated

relative to ground truth on KITTI).

To summarize, our principal contributions in this chapter are:

1. A joint optimization framework for 3D object localization that combines cues from

SFM cues like 3D points and ground plane, with object cues like bounding boxes

and detection scores, to achieve accuracy in both near and far fields.

2. A dense tracking mechanism that can reliably estimate pose and 3D points even

for challenging objects like cars in driving scenarios.

3. Incorporation of raw detection scores to allow 3D bounding boxes to “undo”

tracking errors, that is, achieve consistency with both 3D geometry as well as

detection scores.

7.2 Related Work

Multibody SFM has been proposed in the past to simlutaneously localize a moving

camera and moving objects [LKSV07, OSVG07]. In addition, Schindler et al. [SUW06]

propose a model selection for segmentation. However, multibody SFM for moving object

localization has been demonstrated only for short sequences. Indeed, in real driving

scenarios, it is challenging to obtain reliable feature tracks in sufficient numbers for

multibody SFM to be robust, due to small object size, fast speeds and lack of texture.

92

To localize moving objects, Ozden et al. [OSVG07] and Kundu et al. [KKJ11]

use joint motion segmentation and SFM. Brox et al. [BRGC10] use a combination of

sparse SFM and dense optical flow for joint tracking and segmentation. In practice, it is

difficult to obtain stable feature tracks on low-textured objects such as cars when they

are not close and segmentation is challenging in actual driving videos where camera and

various object motions are often correlated. A different approach is that of multi-target

tracking frameworks that combine object detection with stereo [ELSVG09] or monocular

SFM [CS10, WWR+13]. Detection can handle more distant objects, decouples feature

tracking for individual objects, and together with the ground plane, provides a cue to

estimate object scales that are difficult to resolve for traditional monocular SFM even

with multiple segmented motions [OSG10].

While multi-target tracking frameworks such as [CS10, ELSVG09, WWR+13]

do not show 3D localization results, it is an inherent part of their frameworks. However,

they effectively only triangulate detection bounding boxes against a fixed ground plane.

Our 3D localization goes much further by using a dynamic ground plane, incorporating

SFM cues and making novel use of detection cues. The benefits of each of these is shown

in our experiments. Similarly, systems such as [GLW+14] use a stereo setup to infer the

layout of urban traffic junctions. All such scene understanding and multi-target tracking

frameworks can benefit from our novel use of the ground plane, SFM and detection cues.

Our input is monocular video, so a robust mechanism is needed to estimate 3D

points despite the above challenges. This is crucial and our experiments show that

traditional sparse SFM cannot handle the needs of autonomous driving. Instead, we

propose a combination of dense intensity-aligned pose estimation, an epipolar-guided

extension to TV-L1 optical flow of [ZPB07] and consistency checks in the spirit of sparse

SFM, to extract 3D points for our joint optimization framework. Unlike [WPB+08], we

cannot use a fundamental matrix to constrain flow vectors, since there are not enough

sparse feature matches. While more accurate optical flow methods are available [BBM09,

YMU13], our focus is on a real-time system and we choose TV-L1 for its balance of

accuracy and speed.

93

7.3 Background

In this section, we define our notation and describe the relevant background

concepts.

Notation A vector in Rn is denoted as x = (x1, · · · ,xn)
>. A matrix is denoted as X.

The homogeneous representation of vector x is denoted as x̃ = (x>,1)>. A variable x in

frame t of a sequence is denoted as xt or x(t).

Ground plane geometry As shown in Fig. 7.2, the camera height (also called ground

height) h is defined as the distance from the principal center of the camera to the ground

plane. Usually, the camera is not perfectly parallel to the ground plane and there exists a

non-zero pitch angle θ . The ground height h and the unit normal vector n = (n1,n2,n3)
>

define the ground plane. For a 3D point (x,y,z)T on the ground plane:

h = ycosθ − zsinθ . (7.1)

Object localization through ground plane Accurate estimation of both ground height

and orientation is crucial for 3D object localization. Let K be the camera intrinsic

calibration matrix. As [CS10, ELSVG09, WWR+13], the bottom of a 2D bounding box,

b = (x,y,1)> in homogeneous coordinates, can be back-projected to 3D c = (cx,cy,cz)
>

through the ground plane {h,n}:

c = (cx,cy,cz)
> =− hK−1b

n>K−1b
, (7.2)

Similarly, the object height can also be obtained using the estimated ground plane

and the 2D bounding box height.

Monocular SFM and ground plane estimation The ground plane is estimated at

every frame by adaptively combining cues from sparse SFM, dense inter-frame stereo

and object detection, in accordance with their per-frame relative confidences using the

method in Chapter 5. This is an important choice – as shown in our experiments, using

94

Roll

Pitch

Yaw

Z

Y
h

θ

X

n

Figure 7.2: Geometry of coordinate system definitions for object localization. The
camera height h is the distance from the camera principal point to the ground plane. The
pitch angle is θ and n is the ground plane normal. Thus, the ground plane is defined by
(n,h)>.

an inaccurate or fixed ground plane from calibration cannot be an option for reliable 3D

localization over long sequences.

7.4 Joint Use of SFM and Detection for 3D Object Lo-

calization

As discussed in Section 7.1, SFM and 2D object bounding boxes offer inherently

complementary cues for scene understanding. SFM produces reliable tracks for nearby

objects, but suffers from low resolution in the far field. On the other hand, detection or

tracking bounding boxes tend to be consistent with the 3D scene for far objects, but may

be inaccurately aligned with the near scene due to perspective challenges. In this section,

we propose a framework that combines SFM and 2D object bounding boxes, through an

accurate ground plane, to localize both near and far objects in 3D.

We formulate the 3D object localization in an energy minimization framework.

95

The energy function, E , is a linear combination of SFM and object costs, with additional

terms to enforce consistency with prior knowledge:

E = Es f m +λoEob j +λpEprior. (7.3)

In the following, we explain each cue used for 3D object localization. First, we

define the 3D coordinate system and our representation of 3D object pose.

7.4.1 3D Coordinate System

Consider camera coordinate system C with orthonormal axes (αc,βc,γc) and an

object coordinate O with axes (αo,βo,γo). Let the origin of object coordinates be the

3D point co = (xc,yc,zc)
>, expressed in camera coordinates, corresponding to center of

the line segment where the back plane of the object intersects the ground. Let the ground

plane be parameterized as g = (n>,h)>, where n = (cosθ cosφ ,cosθ sinφ ,sinθ)> =

(n1,n2,n3)
> and h = −cT

c n. In n = (cosθ cosφ ,cosθ sinφ ,sinθ)>, θ is the camera

pitch angle and 90o +φ is the roll angle, where φ ∈ (−180o,0o). We assume that the

object lies on the ground plane and is free to rotate in-plane with yaw angle ψ . Thus, the

object pose is completely determined by a six-parameter vector Ω= (xc,zc,ψ,θ ,φ ,h)>.

The coordinate system definitions are visualized in Figure 7.2.

With the above definitions, one may transform between object and camera systems

using the ground plane, object yaw angle and object position. Define N = [nα ,nβ ,nγ],

where nγ = (−n1,n3,−n2)
>, nβ =−n and nα = nβ ×nγ . Then, given a homogeneous

3D point x̃o in the object coordinate system, the transformation from object to camera

coordinates is given by:

x̃c = PπPψ x̃o, with Pπ =

[
N co

0> 1

]
, Pψ =

[
exp
(
[ωψ]×

)
0

0> 1

]
, (7.4)

where ωψ = (0,ψ,0)> and [·]× is the cross product matrix.

Finally, the projection function for a 3D point xo in object coordinates to the 2D

point u image plane is denoted u = πΩ(xo). It is simply the inhomogeneous version of

λ ũ = K [I |0]PπPψ x̃o. (7.5)

96

7.4.2 SFM Cues

Tracked 3D points Let N objects be tracked in the scene over T frames, with object i

being tracked from frames si to ei. During this interval, suppose Mi feature points are

triangulated by the object SFM mechanism. In the object coordinates, we denote this set

of 3D points as Xi
o = [xi

1, · · · ,xi
Mi
]. Since the object is rigid, note that the location of each

xi
j does not depend on time. Let ui

j(t) = (ui
j(t),v

i
j(t)) be the 2D point corresponding to

xi
j in frame t. Then, the first component of the SFM cost favors the object poses {Ωi(t)},

for i = 1, · · · ,N and t = si, · · · ,ei for each object i, that minimize the reprojection error:

Erepro j
(
{Ωi(t)}

)
=

N

∑
i=1

ei

∑
t=si

Mi

∑
j=1
‖ui

j(t)−πΩi(t)(x
i
j)‖2. (7.6)

Note that there is an overall ambiguity in the origin of O with respect to C that

cannot be resolved by SFM alone. To do so, we require input from object bounding

boxes.

Ground plane Also recall that the background monocular SFM system outputs a

ground plane estimate ḡ(t) at every frame t. The object pose as defined in Section 7.4.1

also depends on the ground plane, which is shared across all objects. Note that a shared

ground plane is only imposed for physical plausibility and is not a hard requirement for

our system. In fact, lower energies can be attained by letting each individual object reside

on its own ground plane (and might even be useful in some situations where ground plane

variation is high among objects). Thus, an additional SFM cue that informs object pose

is the ground plane estimate from the background SFM:

Eground
(
{Ωi(t)}

)
=

T

∑
t=1
‖g(t)− ḡ(t)‖2. (7.7)

where i = 1, · · · ,N and t = si, · · · ,ei for each object i, as before.

The combined cost from the SFM cues is now a weighted sum:

Es f m = Erepro j +λgEground. (7.8)

97

7.4.3 Object Cues

Object bounding box Let the dimensions of the object 3D bounding box (to be es-

timated) be lα , lβ , lγ along the αo,βo,γo axes. Then, locations of the 3D bounding

box vertices, in object coordinates, are B = [v1, · · · ,v8], where we have by definition

v1 = (−lα/2,0,0)> , · · · ,v8 =
(
lα/2,−lβ , lγ

)>. Note that the B is in object coordinates

and does not vary over time. The projection of the 3D bounding box is

qk(t) = (pk(t),qk(t))> = πΩ(t)(vk), for k = 1, · · · ,8. (7.9)

Let the projected edges of the 3D bounding box at frame t be b(t) ∈ R4, which

are found as the extrema of the projected vertices along both the image axes:

b1(t) = min
k

pk(t), b2(t) = max
k

pk(t), b3(t) = min
k

qk(t), b4(t) = max
k

qk(t), (7.10)

for k ∈ {1, · · · ,8}. With a mild abuse of notation, we will denote b(t) = πΩ(t)(B).

Let d(t) be the corresponding four sides of the tracked 2D bounding box in frame t. Then,

we define an object bounding box error:

Ebox
(
{Ωi(t)},B1, · · · ,BN)= N

∑
i=1

ei

∑
t=si

‖πΩi(t)(B
i)−di(t)‖2. (7.11)

Object detection scores While we use the output of an object tracker, we must also be

aware that tracked bounding boxes are not always accurate. There are two issues that 3D

localization must address:

• A 2D tracker might not always pick the detection bounding box with the highest

score, rather it can pick one with a high score that is most consistent with any other

priors like smoothness and track length. However, these constraints are imposed in

2D by most trackers, so our 3D localization must provide an opportunity for the

3D bounding box to undo any suboptimal choices made by the 2D tracker.

• Further, many tracking-by-detection frameworks work with the detector output

after nonmaximal suppression, which results in a discrete set of 2D bounding boxes.

98

Our localization framework considers a continuous model of the raw detection

output, which is crucial for 3D consistency.

To address the first issue, a straightforward approach would be to simply attempt

to find the 3D bounding box B whose projection maximizes the detection score. However,

note that this requires the detector model to be evaluated at every function evaluation of

the 3D localization, which can be too expensive for real-time operation. So, we adopt an

alternative approach, as described next.

At every frame t, we assume there are M objects and that the detector outputs N

candidate bounding boxes denoted bn and their respective scores δn, for n = 1, · · · ,N.

We model the distribution of detector scores as a mixture of Gaussians. That is, at each

frame t, we estimate 4×4 full-rank covariance matrices Σm, centered at µm, as:

min
Am,µm,Σm

N

∑
n=1

(
M

∑
m=1

Ame−
1
2 εmnΣ

−1
m εmn−δn

)2

, (7.12)

where εmn = bn−µm (dependence on t is suppressed for clarity). A Levenberg-

Marquardt routine is used for minimization. Example fitting results are shown Fig. 7.3.

Let the model estimated by (7.12) at time t be denoted St , which yields a score

St(b) for a 2D bounding box b at frame t. As a result of the above modeling, during

every function evaluation for 3D localization, for each putative 3D bounding box B and

object pose Ωt , we can estimate the detector score St(πΩ(B)) without having to evaluate

the detection model. We are now in a position to propose an efficient detection cost for

3D localization, which simply attempts to find the 3D bounding box and object pose that

achieves the best detection score:

Edet
(
{Ωi(t)},B1, · · · ,BN)= N

∑
i=1

ei

∑
t=si

(
1

St(πΩi(t)(Bi))

)2

. (7.13)

Thus, we use the raw detection output to allow the estimated 3D bounding box to

overcome any suboptimal choices made by the 2D tracker in assignment of bounding

boxes, while avoiding the cost of too many detector evaluations for every putative 3D

bounding box and object pose.

The total object cost is a weighted sum of the bounding box and detection costs:

99

0 200 400 600 800 1000 1200
−1

0

1

2

3

4

Detection Bounding Boxes

D
et

ec
tio

n
S

co
re

Detection Score
Mixture of Gaussian

0 200 400 600 800 1000
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Detection Bounding Boxes

D
et

ec
tio

n
S

co
re

Detection Score
Mixture of Gaussian

0 200 400 600 800 1000
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Detection Bounding Boxes

D
et

ec
tio

n
S

co
re

Detection Score
Mixture of Gaussian

Figure 7.3: Examples of mixture of Gaussians fits to detection scores. Note that our
fitting (red) closely reflects the variation in noisy detection scores (blue). Each peak
corresponds to an object.

Eob j = Ebox +λdEdet . (7.14)

7.4.4 Priors

We impose two priors for 3D localization: object size and trajectory smoothness.

Let xc(t) be the 3D position of the object at frame t in camera coordinates (obtained by

applying (7.4) on the 3D bounding box B). Further, let g(t) be the ground plane estimate

at frame t. Then the trajectory smoothness prior constitutes a cost given by

Esmooth =
ei

∑
t=si

‖g(t)−2g(t +1)+g(t +2)‖2 +
N

∑
i=1

ei

∑
t=si

‖xc(t)−2xc(t +1)+xc(t +2)‖2.

Let { ¯lα , ¯lβ , l̄γ} be the priors on the object dimensions. Then, the size prior is

Esize =
N

∑
i=1

[
(li

α − ¯lα)2 +(li
β
− ¯lβ)

2 +(li
γ − l̄γ)2

]
. (7.15)

The total cost for imposing priors on 3D localization is then given by a weighted

sum:

Eprior = Esmooth +λsEsize. (7.16)

100

7.4.5 Joint Optimization

With the above definitions of the various cues, we now define the combined energy

function that must be minimized over the set of object poses {Ωi(t)}, 3D bounding box

dimensions Bi and the set of tracked 3D points on each object Xi
o, for objects i = 1, · · · ,N,

each of which is visible in frames si to ei:

E
(
{Ωi(t)},B1, · · · ,BN ,X1

o, · · · ,XN
o
)
= Es f m +λoEob j +λpEprior, (7.17)

where Es f m, Eob j and Eprior are defined in (7.8), (7.14) and (7.16), respectively.

The optimization defined by (7.17) may be regarded as an extension of traditional bundle

adjustment to incorporate object cues, in the sense that it is defined over a set of variables

{Ωi(t)} that constitute “poses” and another set given by {Bi,Xi
o} that constitutes “3D

points”. Thus, it can be solved efficiently using a sparse Levenberg-Marquardt algorithm

and is fast enough to match the real-time monocular SFM.

To maintain computational efficiency over long sequences, we perform the above

joint optimization over a window of W = 50 frames. In all our experiments, the parameter

values are empirically set to the following fixed values: λ0 = 0.7, λp = 2.7, λg = 2.7,

λd = 0.03 and λs = 0.03.

7.4.6 Initialization

The success of a local minimization framework as defined in (7.17) is contingent

on a good initialization. We again rely on an accurate ground plane estimation along with

cues from both 2D bounding boxes and SFM to initialize the variables in (7.17).

Object Poses, {Ωi}: The initial position of an object, ĉo = (x̂c, ŷc, ẑc)
>, is computed

from the object bounding box and ground plane using (7.2). The initial yaw can be

estimated from initial object positions in two frames ĉt−1
o and ĉt+1

o . The object’s ground

height and orientation are initialized to the SFM ground plane. The initial pose of the

object is now available as Ω̂= (x̂c, ẑc, ψ̂,θ ,φ ,h)>.

101

3D Bounding Boxes, {Bi}: The initial object dimensions (l̂α , l̂β , l̂γ) are computed as

the optimal alignment to the 2D bounding box, by fixing l̂γ = η l̂α and minimizing the

cost Ebox over l̂α and l̂β , with a prior that encourages the ratio of bounding box sizes

along γo and αo to be η . The practical reason for this regularization is that the camera

motion is largely forward and most other vehicles in the scene are similarly oriented,

thus, the localization uncertainty along γo is expected to be higher. By training on ground

truth 3D bounding boxes in the KITTI dataset, we set η = 2.5 empirically.

3D Points, {Xi}: For initialization, each tracked 2D feature point u is assumed to lie

on the plane nγ , orthogonal to the ground. Its position in camera coordinates is

xc =−(n>γ cc)(n>γ K−1ũ)−1K−1ũ, (7.18)

thus, the initial 3D point in object coordinates O is x̃o = P−1
π P−1

ψ x̃c.

7.5 Details of SFM Cues

In this section, we describe some of the challenges for extracting SFM cues on

objects such as cars and how we overcome them. Since the background SFM relies on

sparse feature tracking, it is natural to initially consider a similar mechanism to extract

SFM cues for objects. However, in our autonomous driving application, objects can

move fast, have small size and are low in texture. Thus, we propose a dense tracking

mechanism to augment SFM cues for tracked objects.

7.5.1 Sparse Feature Tracking

The sparse feature tracking follows similar principles as the background SFM

[SCG13, SC14]. The essential task for the primary pipeline is to maintain a set of high

quality 3D points, which is achieved by ORB or NCC feature matching and robust PnP

based pose estimations in a RANSAC framework. For autonomous driving applications,

points rapidly move out of field of view, or suffer from blurs and illumination changes. So

a secondary pipeline is tasked with replenishing 3D points – that have already undergone

extensive validations in parallel – to the primary pipeline. It has been shown that this

102

architecture achieves very high accuracy for the background SFM process in visual

odometry benchmarks relevant to autonomous driving [SCG13, SC14].

The key to the utility of SFM cues proposed in Section 7.4 is the quality of feature

matches and 3D points. Due to the small size of many objects of interest, lack of texture

and high speeds relative to the camera, it is hard in practice to obtain enough high quality

sparse matches for stable PnP-based pose estimation, which also affects the quality of

triangulated 3D points. Further, note that having too few sparse matches and bad pose

estimates in effect leads to a breakdown in the object tracking framework, and so must

be avoided. Thus, in Section 7.5.3, we propose a dense tracking mechanism to extract

SFM cues for object localization.

7.5.2 Pose Estimation by Intensity Alignment

As we will see in Section 7.5.3, the knowledge of camera pose is crucial for both

speed and accuracy of dense tracking. However, the PnP-based pose computation of the

sparse pipeline requires prior knowledge of feature tracks. In this section, we propose

to use a dense pose estimation based on image intensity alignment [KSC13]. This has

two benefits – first, it does not rely on feature matching, so the epipolar constraints

introduced by this pose estimation can instead be used to improve the quality of feature

tracking. Second, we show in experiments that the quality of pose estimated by intensity

alignment is better in our application, since the number of sparse matches may be too

low for effective PnP-based pose estimation.

Recall that object pose is defined in Section 7.4.1 as Ω = (xc,zc,ψ,θ ,φ ,h)>.

Supposing the object pose Ω(t) in frame t is known, along with a set of reliable 3D

points, {x}. Then the object pose Ω(t +1) can be estimated by minimizing the intensity

difference between the projections of the 3D points in two neighboring frames:

min
Ω(t+1)

N

∑
i=1

[
It
(
πΩ(t)(xi)

)
− It+1

(
πΩ(t+1)(xi)

)]2 (7.19)

As this intensity alignment is only valid for a small motion between Ω(t) and

Ω(t + 1), the above optimization is embedded into an iterative warping approach to

handle large motions. After the pose estimation, outliers in feature matches are removed

103

by checking the reprojection error with the estimated object pose. This estimated object

pose is refined by the joint optimization framework of Section 7.4, by taking into account

all the cues including 3D points and object bounding boxes. With all individual cues

including 3D points and 2D matches in SFM cues, we are now in a position to use this

pose for improving the quality of 3D points obtained by dense tracking.

7.5.3 Dense Feature Tracking

For normal SFM applications, the sparse features are sufficient. However, due to

low texture, specularity and small size of the object, we found that the sparse features are

not sufficient for us to have a robust feature tracking. Therefore, we introduce the dense

feature matching.

For dense feature tracking, we rely on TV-L1 optical flow between neighboring

frames t and t + 1. To maximize efficiency, we only compute optical flow within the

small sub-image defined by the object bounding box. In practice, optical flow tracks can

be very noisy, while high quality 3D points are crucial for our SFM cues. So, besides the

feature selection mechanism of [SBK10], we also divide each object region into 8×8

buckets and only the pixels with the highest Harris corner responses are selected to be

tracked.

Epipolar Guided TV-L1 Optical Flow Having access to the pose computed from

intensity alignement, rather than from feature tracks, provides the luxury to use the

epipolar constraints from the computed pose to guide the optical flow that generates

features tracks. This has two benefits – first, the optical flow is much faster since a 2D

search on the image plane is reduced to a 1D search on the epipolar line. Second, the

accuracy of feature tracks also improves since optical flow vectors are now constrained

to be consistent with epipolar geometry.

The epipolar line is given by a point p0, along with a direction vector p, p0 is

the closest point to the point at the source image on the epipolar line in the destination

image. Points on the epipolar line can be described by a single parameter u, as p0 +up.

Given images It and It+1 at frames t and t + 1, let Γ be the region of image It under

consideration. For pixels x ∈ Γ with corresponding epipolar lines {p0,p}, the TV-L1

104

energy function is

E =
∫

Γ

λ |It(x)− It+1(p0 +up)|+ |∂u|dx (7.20)

Next, we linearize the image I1 around p0+u0p, where u0 is the putative epipolar

guided match:

It+1(p0 +up) = It+1(p0 +u0p)+(u−u0)∇pIt+1(p0 +u0p), (7.21)

with ∇pIt+1 denoting the derivative of It+1 along the direction p. The TV-L1 cost

function now becomes:

E =
∫

Γ

λ |u∇pIt+1 + It+1(p0 +u0p)−u0∇pIt+1− It |+ |∂u|dx (7.22)

Denoting ρ(u) = (u− u0)∇pIt+1 + It+1(p0 + u0p)− It and by introducing an

auxiliary variable v, we can minimize a convex approximation of (7.22):

Eθ =
∫

Γ

|∂u|+ 1
2θ

(u− v)2 +λ |ρ(v)|dx, (7.23)

where θ is a small constant that ensures v is a close approximation of u. This is

now in the same form as the TV-L1 optical flow in [ZPB07], but with u a 1D variable

instead of 2D. Thus, the same approach as [ZPB07] can be used to solve (7.23) much

faster.

Dense Tracking Framework The tracks obtained by the epipolar-guided optical flow

are triangulated to obtain 3D points. However, optical flow based tracking is noisier

than descriptor-based matching, so the 3D points must be validated before use in object

localization. We use a mechanism similar to the sparse matching pipeline for this

validation. The triangulated 3D point is reprojected into the past few images where it is

visible. Only those points are retained for whom the NCC scores corresponding to all

the reprojections are above a threshold. Now we have a new set of 3D points ready to be

added to the master thread when required. These 3D points are also refined by the joint

optimization framework of Section 7.4 that incorporates other cues too.

105

OpticalmFlowmTracks

Densem3DmPointsm

DensemMatches

Candidate
3DmPoints

Newm3DmPoints

Consistency
Check

EpipolarmGuidedmOpticalmFlow

FeaturemSelection

Sprasem3DmPointsm

Jointm
Optimization
Framework

3DmPoints

3Dm-m2Dm
FeaturemMatching

Sparse
Matches

EpipolarmGuided
FeaturemMatching

Candidate
3DmPoints

Newm3DmPoints

Consistency
Check

Sparse
Matches

3DmPoints

Intensitym
Alignment

Pose 3DmPoints

Figure 7.4: Workflow for 3D points cue in 3D object localization framework. We
maintain two sets of 3D points, sparse and dense. 3D-2D matching maintains the sparse
set. These points together with the dense ones are used by the intensity alignment pose
estimation. Epipolar guided feature matching replenishes sparse 3D points through a
series of validation mechanisms. For dense matches, we track corner-like features from
an epipolar-guided optical flow. Those tracks either provide new 3D points again through
a series of validations or provide feature matches for dense 3D points. The estimated
pose and the entire set of 3D points are used by the joint optimization framework as part
of the SFM cue.

7.6 Experiments

We present evaluation on the state-of-art KITTI dataset [GLU12], which contains

real-world driving sequences. Since KITTI doesn’t provide a benchmark for object

localization and the ground truth 3D labels are not public for the testing dataset, we

evaluate our 3D localization with the training dataset of the tracking benchmark. We

demonstrate 3D localization on tracked bounding boxes computed using [GLW+14],

[CS10] and also the ground truth. Our system has been extensively tested on real-world

driving scenarios to demonstrate its excellent performance.

The joint framework for 3D localization presented in Section 7.4 uses several

106

cues to achieve high accuracy. First, it adaptively estimates the ground plane at every

frame, instead of relying on a fixed one. Second, it estimates and tracks 3D bounding

boxes that are consistent with 2D tracks. Next, it uses raw detection cues to allow the

3D localization to recover from possibly suboptimal choices made by the 2D tracker.

Finally, it incorporates SFM cues in the form of epipolar-guided dense feature tracks.

Our experiments show the benefit of each of these cues.

7.6.1 Localization with Different Ground Plane Estimations

Object localization is an important application of our ground plane estimation.

Accurate estimation of both ground height and orientation is crucial for 3D object

localization. Now we demonstrate the benefit of the adaptive ground plane estimation of

Chapter 5 for 3D object localization.

KITTI does not provide a localization benchmark, so we instead use the tracking

training dataset to evaluate against ground truth. We use Seq 1-8 for training and Seq

9-20 for testing. The metric we use for evaluation is percentage error in object position.

For illustration, we consider only the vehicle objects and divide them into “close” and

“distant”, where distant objects are farther than 10m. We discard any objects that are not

on the road. Candidate bounding boxes for training the object detection cue are obtained

from [FGMR10], called DP here).

Fig. 7.5 compares object localization using a ground plane from our data-driven

cue combination (red curve), as opposed to one estimated using fixed covariances (blue),

or one that is fixed from calibration (black). The top row uses ground truth object tracks,

while the bottom row uses tracks from the state-of-the-art tracker of [PRF11]. For each

case, observe the significant improvement in localization using our cue combination.

Also, from Figs. 7.5(b),(d), observe the significant reduction in localization error by

incorporating the detection cue for ground plane estimation for distant objects.

Fig. 7.1 shows an example from our localization output. Note the accuracy of our

3D bounding boxes (red), even when the 2D tracking-by-detection output (cyan) is not

accurate.

107

8 10 12 14 16 18 20
0

2

4

6

8

10

12

Sequence

D
ep

th
 E

rr
or

 (
%

)

Calibration
Dense
Fixed + Dense + Det
Adapt + Dense + Det

8 10 12 14 16 18 20
5

10

15

20

25

30

35

40

Sequence

D
ep

th
 E

rr
or

 (
%

)

Calibration
Dense
Fixed + Dense + Det
Adaptive + Dense + Det

(a) Close objects (GT) (b) Distant objects (GT)

8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

Sequence

D
ep

th
 E

rr
or

 (
%

)

Calibration
Dense
Fixed + Dense + Det
Adaptive + Dense + Det

8 10 12 14 16 18 20
5

10

15

20

25

30

35

Sequence

D
ep

th
 E

rr
or

 (
%

)

Calibration
Dense
Fixed + Dense + Det
Adaptive + Dense + Det

(c) Close objects (DP) (d) Distant objects (DP)

Figure 7.5: Comparison of 3D object localization errors for calibrated ground, stereo
cue only, fixed covariance fusion and adaptive covariance fusion of stereo and detection
cues. (Top row) Using object tracks from ground truth (Bottom row) Using object tracks
from [PRF11]. Rrrors reduce significantly for adaptive cue fusion, especially for distant
object where detection cue is more useful.

7.6.2 Effectiveness of Different Cues

To demonstrate the effectiveness of each of the above contributions, we show

the object localization accuracy with different methods in Table 7.1 and 7.2 using 2D

bounding boxes from ground truth, as well as the tracking output of [GLW+14]. For each

table, the left column lists different methods as various cues are added in the localization

framework. The most important evaluation metric for our autonomous driving application

is the distance accuracy in depth, Z(%). We also list the horizontal localization accuracy,

X(%).

We differentiate between near and far objects in evaluating the results (although

our localization method does not make any such distinction). This is to show the

108

effectiveness of different cues at various distance ranges. For instance, we expect SFM

cues to be more effective in the near range, while we expect the ground plane estimation

to have a significant impact on far objects. We consider objects up to 15 meters away

to be close. Although SFM cues are effective up to about 30 meters for the camera

resolutions in the KITTI dataset, we find that SFM cues are most stable within 15 to 20

meters.

CalibGround denotes the baseline method where localization is performed

by directly back-projecting the bottom of the tracked 2D bounding box to 3D using

(7.2), with a fixed ground plane. The fixed ground plane is obtained from the calibration,

which is (n>,h)> = (0,−cos(0.03),−sin(0.03),1.7)T for the KITTI dataset. Note

that this is essentially how the ground plane is used for localization in several prior

works [CS10, ELSVG09, WWR+13]. Observe that the localization errors are very high –

clearly this is not suitable for autonomous driving applications.

AdaptiveGround uses the same back-projection of (7.2) to estimate the loca-

tion of the 3D bounding box, however, the ground plane used is adaptively estimated

at every frame, replicating the method of [SC14]. It is observed that the localization

accuracy is improved significantly, especially for far objects, since small errors in ground

plane orientation can have a large impact on 3D error over longer distances. We empha-

size that a good ground plane is not only crucial for localization accuracy, but also has an

important role in the stability of the joint optimization framework. We have the global

object size variables across all the frames and there are object size prior terms and object

bounding box terms in the joint optimization framework. Note that both object size and

distance are variables in our optimization framework. The object size, the ground plane

and the object distance are highly correlated entities, so poor ground plane estimation in

a few frames may cause the optimization to break down. Thus, these results demonstrate

the high quality of the ground plane estimation as well.

In Ground+Opt, besides using the adaptive ground plane, we also estimate 3D

bounding boxes that best fit the tracked 2D bounding boxes. Priors are also enabled for

3D trajectory smoothness and 3D size constancy. As we can see, injection of further 3D

cues causes the errors to decrease, especially for near objects.

Next, we add object detection cues in the joint optimization framework to incorpo-

109

Table 7.1: Comparison of 3D object localization errors for various cues used in our joint
optimization framework, with bounding boxes from ground truth. The benefits of each of
adaptive ground plane, object bounding boxes, detection scores and 3D points are clearly
visible, as is the performance benefit from our dense tracking.

Method
Ground Truth

Close Objects Far Objects
Z(%) X(m) Z(%) X(m)

Calib Ground 10.15 0.526 25.27 0.79
Adaptive Ground 8.97 0.379 9.81 0.35

Ground+Opt 6.42 0.261 8.90 0.35
Ground+Opt+Det 6.08 0.246 8.63 0.33

Ground+Opt+Det+PnP 5.87 0.243 8.54 0.34
Ground+Opt+Det+Align 5.49 0.240 8.26 0.33

Table 7.2: Comparison of 3D object localization errors for various cues used in our joint
optimization framework, with the tracking output of [GLW+14]. The benefits of each of
adaptive ground plane, object bounding boxes, detection scores and 3D points are clearly
visible, as is the performance benefit from our dense tracking.

Method
TBD [GLW+14]

Close Objects Far Objects
Z(%) X(m) Z(%) X(m)

Calib Ground 13.29 0.58 26.90 0.75
Adaptive Ground 13.89 0.50 10.17 0.33

Ground+Opt 9.49 0.33 9.42 0.34
Ground+Opt+Det 9.43 0.32 9.48 0.33

Ground+Opt+Det+PnP 9.37 0.30 11.19 0.37
Ground+Opt+Det+Align 8.29 0.28 10.43 0.36

rate raw detection scores. The results are shown in the row labeled Ground+Opt+Det.

It is clear that the error decreases further, since the system can now search for 2D detection

bounding boxes that have high scores and are more consistent with 3D geometry.

In Ground+Opt+Det+PnP, we incorporate SFM cues in the joint optimization

framework, but with a PnP based pose estimation. A full optical flow must be used

now instead of an epipolar-guided one, since feature tracks are precursors to PnP. The

remaining validation mechanisms are the same as the description in Section 7.5. However,

due to the challenging size and texture of the objects under consideration, PnP is limited

by outliers from unstable tracking. As we see, the improvement from adding PnP based

SFM cues is quite limited. (We also attempted a PnP based object pose estimation based

on sparse SIFT feature matches, however, the number of matches are too few, which

110

260 280 300 320
0

5

10

15

20

25

30

Frame Index

Z
(%

)

260 280 300 320
7

8

9

10

11

12

13

Z
(m

)

Ground+Opt
Ground+Opt+Det+Align
Vehicle Distance

Figure 7.6: Benefit of SFM cues for 3D object localization. The green curve plotted
against the right axis shows distance of an object as it approaches the camera. On the
left axis, the blue curve shows object depth error when only object bounding box cues
are used for localization, while the red curve incorporates SFM cues. SFM cues have a
significant impact on localization accuracy in the near field.

causes breakdowns due to highly inaccurate poses.)

Finally, in Ground+Opt+Det+Align, we use dense tracking based on epipolar-

guided optical flow, along with the intensity alignment based pose estimation to replace

the PnP. It is seen that errors decrease for the ground truth bounding boxes in Table

7.1 and 7.2, but even more so for the actual detection bounding boxes. This clearly

demonstrates that SFM cues can help 3D object localization to account for unstable

detection and tracking inputs. Intuitively, SFM cues are expected to be more helpful

for close objects, for which better quality 3D points can be estimated. Our results are

consistent with this intuition.

111

Table 7.3: Our 3D object localization can improve the performance of existing scene
understanding frameworks such as [CS10]. This is due to our joint optimization that
makes judicious use of an adaptive ground plane, 3D points, object bounding boxes and
detection scores. Note that [SC14] uses a global optimization, while we use a windowed
one and yet perform better in many instances.

Seq. No. 0004 0047 0056
Object ID 1 2 3 6 0 4 9 12 0

No. of Frames 91 251 284 169 170 96 94 637 293

Z (%)
MTT [CS10] 14.4 17.6 12.9 12.3 16.2 18.1 13.8 11.6 13.9

MLMSFM [SC14] 4.1 6.8 5.3 7.3 9.6 11.4 7.1 10.5 5.5
Ours 6.04 5.64 4.93 5.92 5.86 12.46 7.04 8.24 6.01

7.6.3 Effectiveness of SFM Cues

To further illustrate the relative benefits accrued by SFM cues, Figure 7.6 shows

a sample output of the system from a few frames in the KITTI dataset. The green

curve corresponds to distance of an object as it approaches the camera (right axis). The

left axis shows the error in depth estimate for the methods Ground+Opt (blue cirve)

and Ground+Opt+Det+Align (red curve). The latter includes SFM cues, while the

former does not. It can be seen that SFM cues are inactive when the object is further, but

keep the error rate low when the object is near. On the other hand, ignoring SFM cues

and relying only on object bounding boxes impacts performance in the near field.

7.6.4 Comparison with [CS10]

Finally, we show the improvement in 3D localization that our use of SFM and

detection cues affords for other scene understanding frameworks. We use the tracking

output provided by [CS10] on a few KITTI sequences, along with its raw detection output

based on [FGMR10]. The localization error is compared to the method of [SC14] that

only uses an adaptive ground plane and detection bounding boxes, as well as our method

that additionally incorporates 3D points and detection scores. Note that [SC14] performs

a global optimization over all the frames, while we use only a windowed optimization. It

is evident from Table 7.3 that our use of SFM and detection cues can also benefit other

scene understanding frameworks.

112

7.7 Discussion and Future Work

We have presented a joint optimization framework for 3D object localization,

designed for autonomous driving applications. It recognizes and exploits the complemen-

tary strengths of SFM cues (3D points and ground plane) and object cues (bounding boxes

and detection scores), to achieve good localization accuracy in both near and far fields.

Our system is efficient and can operate in real-time – it can be considered an extension of

traditional bundle adjustment with object cues. The generality of our framework means it

can be used to readily improve the performance of most 3D scene understanding systems

that rely on object tracking and a ground plane. Our system uses object detection as input

and a challenge for future work is to obtain this input in real-time. Our future work also

explores the use of our 3D object localization in autonomous driving applications that

involve comprehensive scene understanding.

This chapter has been submitted for publication, as it may appear in “High

Accuracy Monocular 3D Object Localization for Autonomous Driving”, by Shiyu Song,

Manmohan Chandraker, in proceedings of European Conference on Computer Vision,

Zurich, September 6-12, 2014.

Chapter 8

Monocular Lane Detection

The problem of lane detection is an important component for many intelligent ve-

hicle applications, such as lane departure warning, lane keeping, turn assist, autonomous

driving, traffic scene understanding, and so on. The structure from motion (SFM) system

in Chapter 4 and the ground plane estimation in Chapter 5 can significantly improve the

performance of a lane detector by incorporating SFM and ground plane cues. For exam-

ple, a common technique used in lane detection, the bird-eye-view transform, requires a

homography plane (the ground plane). A more accurate ground plane can improve the

quality of the bird-eye-view transform. Another example is that a common problem to

solve in a video-based lane detection is line segment matching. The epipolar constraint

from computed SFM poses enables us to solve this problem more effectively. In this

chapter, we present a lane detection system incorporating our SFM poses and ground

planes from our SFM system.

8.1 System architecture

In contrast to prior lane detection algorithms, our system incorporates SFM pose

cues and ground plane cues. The system workflow proceeds in a similar way as our SFM

system.

At steady state, the system has access to a set of 3D lanes. A 3D lane is represented

by a parabolic curve in 3D, on the ground. In each new frame, we extract line segments,

try to find supporting line segments for each existing 3D lane, and trim the existing 3D

113

114

lanes according to them, so that we track these 3D lanes. To distinguish from the step

“line segment tracking” defined later, we call this step “lane tracking”.

When the new frames contain new lanes that have not been detected, we add these

lanes in a keyframe. To find the candidate lanes to add in a keyframe, we track extracted

line segments over L = 3 frames. If a line segment can be consistently tracked over L

frames, we believe that there is a good lane associated with this line segment to be added.

This step is called “line segment tracking”. After a series of steps, such as non-maximum

suppression, lane selection, lane fitting and so on, the new lane is selected, created and

added to the set of 3D lanes maintained by our system. In the following sections, we

describe the details of each step.

8.2 bird-eye-view Transform

To extract line segments, we find that a bird-eye-view transform of the original

image can significantly boost the performance, because of the perspective distortion.

Given an estimated ground plane from Chapter 5, we can construct a homography matrix

to transform the image from a normal view to a bird-eye view as shown in Figure 8.1. As

we can see, obviously the perspective in the bird-eye-view is distorted. It is expected that

the line segment algorithms will work significantly better, which we’ll see in the next

section.

8.3 Line Extraction

To extract line segments, we first compute the gradient map of the input image.

The gradient map is computed by using OpenCV’s Sobel function with first order

derivative in the x and y direction and kernel size 5. The computed gradient map is shown

in Figure 8.2.

The computed gradient map is converted to a binary map by applying a response

threshold (120 for bird-eye-view and 170 for normal view). The binary map is used as the

input to the commonly used Hough transform algorithm and its variation [Hou59, DH72,

MGK00] to extract line segments, as shown in Figure 8.3. Note some line segments

115

(a) Normal View

(b) Bird-eye-view

Figure 8.1: Bird-eye-view transform of an image in KITTI dataset. (a) The normal view
(b) The bird-eye-view transformed based on the ground plane estimation in Chapter 5.

116

(a) Gradient map in normal view

(b) Gradient map in bird-eye-view

Figure 8.2: Gradient map of an image and its bird-eye-view transform in KITTI dataset.
(a) Gradient map in normal view (b) Gradient map in bird-eye-view.

117

above the ground are also extracted. These line segments can be eliminated easily by

taking the horizon computed from the ground plane into consideration. To achieve the

best robustness, our system extracts line segments from both the normal view and the

bird-eye-view, and saves them for line segment tracking and lane tracking.

8.4 Lane Tracking and Temporal Integration

At steady state, the system has access to a set of 3D lanes. The lane tracking step

tracks the existing 3D lanes by finding supporting line segments in the new frame, trims

and updates the 3D lanes according to them.

Given the camera intrinsic matrix and SFM poses, we can project the 3D lanes to

2D, and then convert them to bird-eye-view. Given each 2D lane in bird-eye-view, we try

to find all the similar extracted line segments in the view. If the orientation difference

between the lane and the line segment is smaller than 5 degree and the distance between

the end points of the line segment and the lane is smaller than 35 pixels, we consider the

line segment and the lane are similar. After finding all the similar line segments to a lane,

we add the end points of these similar line segments to the lane as new control points.

Recall that a lane is represented by a fitted parabola curve. A parabola curve is fitted by a

set of control points. By updating these control points, the lane is updated. If a lane can’t

find any supporting (similar) line segments, we consider that the lane has disappeared

and eliminate it. The 2D control points will be triangulated to 3D against the ground

plane by using Equation 7.2 in Section 5.1 of Chapter 7. In this way, the 3D lanes are

updated as well.

The procedure is illustrated in Figure 8.4. In the figure, a lane is represented as a

line segment with only two control points for simplicity. In frame t− k and t, we find the

supporting line segments and triangulate the control points to get the 3D lane. The 3D

lane is then projected to the new frame t +1. In frame t +1, we found the supporting

line segment (in green), and then updated the 3D lane according to it.

So far, we can consistently tracking existing 3D lanes. To add new 3D lanes

into the system, we need a mechanism for line segment tracking and lane adding in a

keyframe.

118

(a) Gradient map in normal view

(b) Gradient map in bird-eye-view

Figure 8.3: Line segment extraction of an image and its bird-eye-view transform in
KITTI dataset. (a) Line segment extraction in normal view (b) Line segment extraction
in bird-eye-view.

119

Frame t-k
Frame t

Frame t+1

Figure 8.4: Lane triangulation and lane tracking. A lane is represented as a line segment
with only two control points for simplicity. In frame t− k and t, we find the supporting
line segments and triangulate the control points to get the 3D lane. The 3D lane is then
projected to the new frame t +1. In frame t +1, we found the supporting line segment
(in green), and then updated the 3D lane according to it.

120

Frame t-k Frame t-k+1 Frame t

3D Lane

...

Figure 8.5: Line segment tracking and new lane adding. Starting from frame t− k, we
track a line segment until a new key frame, frame t. In the frame t, we consider this line
segment as a good candidate, since it has already been consistently tracked over k frames.
A new 3D lane based on it is then added to the system.

8.5 Line Segment Tracking

When the new frames contain new lanes that have not been detected, we add

these lanes in a keyframe. For robustness, we first track the line segments over L = 3

frames. If a line segment can be consistently tracked over L frames, we believe that there

is a good lane associated with this line segment to be added.

The procedure is illustrated in Figure 8.5. Starting from frame t− k, we track a

line segment until a new key frame, frame t. In the frame t, we consider this line segment

as a good candidate, since it has already been consistently tracked over k frames. A new

3D lane based on it is then added to the system.

To track a line segment, in every new frame, we try to find the best matching

line segment. This procedure is done by using epipolar geometry and computing NCC

scores of the points from the source and the destination line segments, shown in Figure

8.6. Starting from a point within a set of points evenly distributed at the source line

segment at frame t−1, we compute an epipolar line (in black) for it in frame t. Suppose

there are some destination line segments in frame t that have intersections with the

computed epipolar line. NCC scores are computed between the start point and these

intersections. This step is repeated for every point from the set of points at the source

121

Frame t-1 Frame t

Source line seg

Destination line seg

Epipolar line
Start point

R, t

Figure 8.6: Line segment matching. Starting from a point (called the start point) within
a set of points evenly distributed at the source line segment at frame t−1, we compute an
epipolar line (in black) of it in frame t. Suppose there are some destination line segments
in frame t that have intersections with the computed epipolar line. NCC scores are
computed between the start point and these intersections. This step is repeated for every
point from the set of points at the source line segment. NCC scores are accumulated
for each destination line segment. At the end, the destination line segment that has the
highest sum of the NCC scores is considered as the best match.

line segment. NCC scores are accumulated for each destination line segment. At the end,

the destination line segment that has the highest sum of the NCC scores is considered the

best match. In this matching step, the epipolar constraint is used, so the SFM pose cues

are incorporated.

We continue tracking the line segment in the new frames. When a new keyframe

comes, we add new lanes based on these well tracked line segments.

8.6 Lane Adding in a Keyframe

Line segments are tracked over L frames, then new lanes are created and added

based on these tracks at a keyframe. In this section, we discuss the details of the adding

step.

The first step is non-maximum suppression. This step reviews all the tracked

122

(a) Line segments before non-maximum suppression.

(b) Line segments after non-maximum suppression.

Figure 8.7: Line segment non-maximum suppression. This step reviews all the tracked
line segments in the key frame, and combines similar line segments. After non-maximum
suppression, we have only one longest line segment in the local region with similar
orientation. (a) Line segments before non-maximum suppression. (b) Line segments
after non-maximum suppression.

line segments in the key frame, and combines similar line segments. Here “similar”

means two parallel and overlapped line segments. Note that the definition of “similar” is

different from before. After non-maximum suppression, we have only one longest line

segment in the local region with similar orientation, as shown in Figure 8.7.

The second step is lane selection and creation. In this step, we process all the line

segments after non-maximum suppression, and create lanes based on them. We also try

to link the two line segments, if their orientation difference is smaller than 5 degree and

the distance between the end points of the line segments is smaller than 35 pixels. For

these line segments, we consider them similar line segments. We create the new lane by

adding all the end points of these line segments as control points. These control points

are triangulated to 3D against the ground, then the 3D parabola curve is fitted to these 3D

123

control points to represent a 3D lane.

The system continues maintaining these new added 3D lanes together with exist-

ing lanes as discussed in Section 8.4. In the next section, we discuss our lane detection

results.

8.7 Experiments and Results

We present our lane detection results on the KITTI dataset. The results of Seq

0002 are shown visually in the Figure 8.8. As we can see, (a) Frame 11: Our system has

good performance to confront interference, such as shadows. (b) Frame 47 and (c) Frame

79: Our system works well for normal road conditions. (d) Frame 131: Our system

doesn’t have the constraint that lanes have to be aligned with the direction of vehicle

motion. Horizontal lanes are detected as well.

The results of Seq 0003 are shown in the Figure 8.9. (a) Frame 26: Our system

has good performance to confront interference, such as other cars. (b) Frame 52: Our

system works well for normal road conditions. (c) Frame 93 and (d) Frame 139: Our

system can detect some false positives, but these false positives are not hard to eliminate

by incorporating more cues, such as road/lane color and possible road region priors.

The results of Seq 0004 are shown in the Figure 8.10. (a) Frame 14: Our system

doesn’t have the constraint that a lane has to be aligned with the direction of the vehicle

motion. Horizontal lanes are detected as well. (b) Frame 53: Our system works well

in normal road conditions. (c) Frame 122 and (d) Frame 227: Our system has good

performance to confront interference, such as shadows.

8.8 Conclusions

In this chapter, we presented a lane detection system incorporating our SFM poses

and ground planes. It has been shown that accurate ground planes can improve the results

of the bird-eye-view transform, thereby boosting the performance of the line segment

extraction step accordingly. By incorporating the epipolar constraints computed from

SFM poses, a line segment matching algorithm is introduced, which plays an important

124

(a) Frame 11.

(b) Frame 47.

(c) Frame 79.

(d) Frame 131.

Figure 8.8: Lane detection results of KITTI Seq 0002. (a) Frame 11: Our system has
good performance to confront interference, such as shadows. (b) Frame 47 and (c) Frame
79: Our system works well in normal road conditions. (d) Frame 131: Our system doesn’t
have the constraint that the lane has to be aligned with the direction of the vehicle motion.
Horizontal lanes are detected as well.

125

(a) Frame 26.

(b) Frame 52.

(c) Frame 93.

(d) Frame 139.

Figure 8.9: Lane detection results of KITTI Seq 0003. (a) Frame 26: Our system has
good performance to confront interference, such as other cars. (b) Frame 52: Our system
works well in normal road conditions. (c) Frame 93 and (d) Frame 139: Our system
can detect some false positives, but these false positives are not hard to eliminate by
incorporating more cues, such as road/lane color and possible road region priors.

126

(a) Frame 14.

(b) Frame 53.

(c) Frame 122.

(d) Frame 227.

Figure 8.10: Lane detection results of KITTI Seq 0004. (a) Frame 14: Our system
doesn’t have the constraint that the lane has to be aligned with the direction of the vehicle
motion. Horizontal lanes are detected as well. (b) Frame 53: Our system works well
in normal road conditions. (c) Frame 122 and (d) Frame 227: Our system has good
performance to confront interference, such as shadows.

127

role in the robustness of a lane detection system. Experimental results are shown using

the KITTI benchmark dataset. Our system works well in normal road conditions, and

also has good performance to confront interference, such as shadows, other cars and so

on.

Chapter 9

Conclusions

Autonomous driving has become a hot topic in both academia and industry. The

progress of autonomous car development in Google or other companies has become

more and more promising. Although they are still far away from real consumer markets,

people are warmly hoping autonomous driving techniques can become practical and

affordable in the coming 10 years. Besides autonomous driving, there are also other

related applications with lower barriers, such as collision avoidance, driver warning, and

so on. All these applications can benefit from this work. In this section, we summarize

our contributions and discuss future directions.

9.1 Discussion

This thesis has investigated structure from motion techniques for the application of

autonomous driving. We have demonstrated that judicious multithreading can boost both

the speed and accuracy of handling challenging road conditions. This is achieved through

a novel per-frame epipolar search mechanism that generates redundantly validated 3D

points persistent across long tracks and an efficient keyframe architecture to perform

online thread-safe global bundle adjustment in parallel with pose computation. The novel

epipolar search thread avoids delay, improves the quality of 3D points compared to prior

approaches that only search and add 3D points when necessary, and also overcomes

the challenge of fast moving imagery in the application of autonomous driving by

searching in every frame. Additionally, the epipolar search works together with local

128

129

bundle adjustment as a replacement for a more accurate, but expensive, multiview

triangulation, which significantly improves the robustness and the accuracy. We have

adaptive mechanisms for all types of typical SFM components, such as feature extraction,

feature matching, keyframe or firewall adding. All these characteristics allow the system

to outperform other state-of-the-art systems by large margins. The system is optimized

to provide pose output in real-time at every frame, without delays for keyframe insertion

or refinement. Our monocular visual odometry system performs nearly as well as stereo

systems, which is attributable to robust correction of scale drift.

Our robust and accurate scale correction is a significant step in bridging the gap

between monocular and stereo SFM. We believe this has great benefits for autonomous

driving applications. We have demonstrated that the performance of real-time monocular

SFM that uses our ground plane estimation is comparable to stereo on real-world driving

sequences. In particular, we have shown that it is beneficial to include cues such as dense

stereo and object bounding boxes for ground estimation, besides the traditional sparse

features used in prior works. Further, we proposed a mechanism to combine those cues

in a principled framework that reflects their per-frame relative confidences, as well as

prior knowledge from training data. Significant improvement of the accuracy of ground

plane estimation over prior works has been demonstrated. Not only does the ground

plane estimate help scale correction of a monocular SFM system, but also it is a crucial

component of a more ambitious traffic scene understanding system. Our accurate ground

plane easily benefits existing 3D localization frameworks and vision-based lane detection

for those applications, as also demonstrated by our experiments.

9.2 Future Directions

Our monocular SFM system provides accurate self-localization functionalities.

But since all SFM systems localize incrementally, accumulation of error is inevitable. A

clear direction to solve this issue is to integrate sensors, such as the global positioning

system (GPS), or prior information, such as maps, into the system. GPS has already

become standard equipment in modern cars. Map information is also accessible through

Wi-Fi or 4G mobile network or local storage. A self-localization system combining a

130

vision based SFM system with GPS or map information should be a practical solution

for the autonomous driving application.

Based on state-of-the-art detection and tracking techniques, we demonstrated

our monocular object localization framework through a highly accurate ground plane.

This suppests a direction for a traffic scene understanding system. A traffic scene

understanding system can detect and track cars, pedestrians, bicycles, trucks, buses and

so on. Given their localizations, trajectory prediction becomes a trivial further step. Ever

further, a scene understanding system could built upon these to accomplish all types of

applications, such as safety and non-safety awareness, collision prediction and avoidance,

and so on.

Last but not least, our final goal is to achieve a vision-based autonomous driving

system, as opposed to the currently developed autonomous driving systems based on

LIDAR (laser radar) that are hundreds of times more expensive . We believe a vision-

based system is the final cost friendly solution for consumers in the future.

Appendix A

Appendix A

A.1 Essential Matrix Estimation

A essential matrix can be estimated from a set of corresponding image points by

using the 8-point algorithm. Let E = T̂ R be the essential matrix.

E =


e11 e12 e13

e21 e22 e23

e31 e32 e33

 . (A.1)

We can stack the 3×3 entries of a vector Es ∈ R9:

Es = [e11,e21,e31,e12,e22,e32,e13,e23,e33]
T ∈ R9. (A.2)

We further denote the Kronecker product ⊗ as:

A⊗B=̇


a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...

am1B am2B · · · amnB

 ∈ Rmk×nl, (A.3)

where A ∈ Rm×n and B ∈ Rk×l .

Let (x̃ j
1, x̃

j
2), j = 1,2, · · · ,n be a set of corresponding image points in the homoge-

neous representation. Define:

131

132

a j=̇x̃ j
1⊗ x̃ j

2. (A.4)

Stack a j as:

χ=̇[a1,a2, · · · ,an]T . (A.5)

Ideally, the vector Es satisfies

χEs = 0. (A.6)

At least 8 correspondences are needed to estimate an essential matrix. To compute

the Es that minimizes the least-squares error ‖χEs‖2, Singular Value Decomposition

(SVD) is used, and the Es is the eigenvector of χT χ that corresponds to its smallest

eigenvalue.

In detail, let the SVD of χ be χ =UχΣχV T
χ . Define Es to be the ninth column of

Vχ , and unstack the entries of Es into a 3×3 matrix, called E ′est. In general, this E ′est may

not be in the essential space.

To project the estimated essential matrix into the essential space, one could

compute the SVD of E ′est to be

E ′est =UΣV T . (A.7)

In the ideal case, one of the diagonal elements of Σ should be zero, or at least

small compared to the other two, which should be equal. So we set

Σ
′ =


1 0 0

0 1 0

0 0 0

 . (A.8)

The optimized essential matrix Eest =UΣ ′V T .

A.2 Homography Matrix Estimation

A homography matrix can be estimated from a set of corresponding image points

in a plane. Let H = R+ 1
d T NT ∈ R3×3 be the planar homography matrix. We can stack

133

the entries of H as a vector:

Hs = [H11,H21,H31,H12,H22,H32,H13,H23,H33]
T ∈ R9. (A.9)

Define

χ = [a1,a2,a3, · · · ,an]T ∈ R3n×9, (A.10)

where the matrix aj = x̃ j
1⊗ ˆ̃x j

2. x̃1 and x̃2 are the homogeneous representation

of a pair of correspondences at the same plane in two images. In total, we have n

correspondences. ˆ̃x is the cross product matrix of the vector defined in Section 3.1.1. ⊗
is the Kronecker product defined in Section A.1.

Ideally, the vector Hs satisfies

χHs = 0. (A.11)

At least four correspondences are needed to compute a homography matrix. Let

the SVD of χ be χ =UχΣχV T
χ . Define Hs to be the ninth column of Vχ , and unstack the

entries of Hs into a 3×3 matrix, called H ′est.

Compute the SVD of H ′est to be

H ′est =UΣV T =U


σ1 0 0

0 σ2 0

0 0 σ3

V T . (A.12)

We can normalize H ′est as Hest = H ′est/σ2.

Bibliography

[AAWS11] M. Achtelik, M. Achtelik, S. Weiss, and R. Siegwart. Onboard imu and
monocular vision based control for mavs in unknown in- and outdoor envi-
ronments. In Robotics and Automation (ICRA), 2011 IEEE International
Conference on, pages 3056–3063, May 2011.

[AFDM08] A. Angeli, D. Filliat, S. Doncieux, and J.-A. Meyer. Fast and incremental
method for loop-closure detection using bags of visual words. Robotics,
IEEE Transactions on, 24(5):1027–1037, Oct 2008.

[BBM09] T. Brox, C. Bregler, and J. Malik. Large displacement optical flow. In Com-
puter Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference
on, pages 41–48, June 2009.

[BDW06] Tim Bailey and H. Durrant-Whyte. Simultaneous localization and mapping
(slam): part ii. IEEE Robotics Automation Magazine, 13(3):108–117, Sept
2006.

[BM92] P.J. Besl and Neil D. McKay. A method for registration of 3-d shapes. Pat-
tern Analysis and Machine Intelligence, IEEE Transactions on, 14(2):239–
256, Feb 1992.

[BRGC10] T. Brox, B. Rosenhahn, J. Gall, and D. Cremers. Combined region and
motion-based 3D tracking of rigid and articulated objects. PAMI, 32(3):402–
415, March 2010.

[CFJS00] Alessandro Chiuso, Paolo Favaro, Hailin Jin, and Stefano Soatto. 3-d
motion and structure from 2-d motion causally integrated over time: Im-
plementation. In Robotics and Automation, IEEE Transactions on, pages
734–750, 2000.

[CGDM09] J. Civera, O.G. Grasa, A.J. Davison, and J. M M Montiel. 1-point ransac
for EKF-based structure from motion. In Intelligent Robots and Systems,
IEEE International Conference on, pages 3498–3504, Oct 2009.

134

135

[CGDM10] Javier Civera, Oscar G. Grasa, Andrew J. Davison, and J. M. M. Mon-
tiel. 1-point ransac for extended Kalman filtering: Application to real-
time structure from motion and visual odometry. Journal of Field Robot,
27(5):609–631, September 2010.

[CLFP10] Brian Clipp, Jongwoo Lim, Jan-Michael Frahm, and Marc Pollefeys. Par-
allel, real-time visual SLAM. In IROS, pages 3961–3968, 2010.

[CMM05] Yang Cheng, M. Maimone, and L. Matthies. Visual odometry on the
mars exploration rovers. In Systems, Man and Cybernetics, 2005 IEEE
International Conference on, volume 1, pages 903–910 Vol. 1, Oct 2005.

[CN08] Mark Cummins and Paul Newman. Fab-map: Probabilistic localization
and mapping in the space of appearance. The International Journal of
Robotics Research, 27(6):647–665, 2008.

[CS10] Wongun Choi and Silvio Savarese. Multi-target tracking in world coordi-
nate with single, minimally calibrated camera. In ECCV, pages 553–567,
2010.

[Dav03] A.J. Davison. Real-time simultaneous localisation and mapping with a
single camera. In ICCV, pages 1403–1410, Oct 2003.

[DG09] Gijs Dubbelman and Frans Groen. Bias reduction for stereo motion esti-
mation with applications to large scale visual odometry. In CVPR, 2009.

[DH72] Richard O. Duda and Peter E. Hart. Use of the hough transformation to
detect lines and curves in pictures. Communications of the ACM, 15(1):11–
15, January 1972.

[DM98] Leonardo Dagum and Ramesh Menon. Openmp: an industry standard api
for shared-memory programming. Computational Science Engineering,
IEEE, 5(1):46–55, 1998.

[DRMS07] Andrew J. Davison, Ian D. Reid, Nicholas D. Molton, and Olivier Stasse.
MonoSLAM: Real-time single camera SLAM. PAMI, 29(6):1052–1067,
2007.

[DWB06] H. Durrant-Whyte and Tim Bailey. Simultaneous localization and mapping:
part i. IEEE Robotics Automation Magazine, 13(2):99–110, June 2006.

[ELSVG09] A. Ess, B. Leibe, K. Schindler, and L. Van Gool. Robust multiperson
tracking from a mobile platform. PAMI, 31(10):1831–1846, 2009.

[FB81a] Martin A. Fischler and Robert C. Bolles. Random sample consensus:
A paradigm for model fitting with applications to image analysis and
automated cartography. Commun. ACM, 24(6):381–395, June 1981.

136

[FB81b] Martin A. Fischler and Robert C. Bolles. Random sample consensus: a
paradigm for model fitting with applications to image analysis and auto-
mated cartography. Communications of the ACM, 24(6):381–395, June
1981.

[FEN07] F. Fraundorfer, C. Engels, and D. Nister. Topological mapping, localization
and navigation using image collections. In Intelligent Robots and Systems,
2007. IROS 2007. IEEE/RSJ International Conference on, pages 3872–
3877, Oct 2007.

[FGMR10] Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester, and Deva
Ramanan. Object detection with discriminatively trained part-based models.
PAMI, 32(9):1627–1645, 2010.

[FL88] O. D. Faugeras and F. Lustman. Motion and Structure From Motion in a
Piecewise Planar Environment. Pat. Rec. AI, 2(3):485–508, 1988.

[FS12] F. Fraundorfer and D. Scaramuzza. Visual odometry: Part ii: Matching,
robustness, optimization, and applications. IEEE Robotics Automation
Magazine, 19(2):78–90, June 2012.

[FWmFP08] Friedrich Fraundorfer, Changchang Wu, Jan michael Frahm, and Marc
Pollefeys. Visual word based location recognition in 3d models using
distance augmented weighting. In In Fourth International Symposium on
3D Data Processing, Visualization and Transmission, 2008.

[GKS+10] G. Grisetti, R. Kummerle, C. Stachniss, U. Frese, and C. Hertzberg. Hi-
erarchical optimization on manifolds for online 2d and 3d mapping. In
Robotics and Automation (ICRA), 2010 IEEE International Conference on,
pages 273–278, May 2010.

[GLU12] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for
autonomous driving? The KITTI vision benchmark suite. In CVPR, 2012.

[GLW+14] A. Geiger, M. Lauer, C. Wojek, C. Stiller, and R. Urtasun. 3D traffic scene
understanding from movable platforms. PAMI, 2014.

[GZS11] Andreas Geiger, Julius Ziegler, and Christoph Stiller. StereoScan: Dense
3D reconstruction in real-time. In IEEE Int. Veh. Symp., 2011.

[Har97] Richard Hartley. In defense of the eight-point algorithm. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 19(6):580–593, Jun 1997.

[HARB11] P. Hansen, H. Alismail, P. Rander, and B. Browning. Monocular visual
odometry for robot localization in lng pipes. In Proceedings of Robotics
and Automation (ICRA), 2011 IEEE International Conference on, pages
3111–3116, May 2011.

137

[HCSD10] A. Handa, M. Chli, H. Strasdat, and A.J. Davison. Scalable active match-
ing. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE
Conference on, pages 1546–1553, June 2010.

[HLON91] R.M. Haralick, D. Lee, K. Ottenburg, and M. Nolle. Analysis and solutions
of the three point perspective pose estimation problem. In Computer Vision
and Pattern Recognition, 1991. Proceedings CVPR ’91., IEEE Computer
Society Conference on, pages 592–598, Jun 1991.

[Hou59] P.V.C. Hough. Machine Analysis Of Bubble Chamber Pictures. In 2nd
International Conference On High-Energy Accelerators, 1959.

[How08] A. Howard. Real-time stereo visual odometry for autonomous ground
vehicles. In Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ
International Conference on, pages 3946–3952, Sept 2008.

[HP88] C. G. Harris and J. M. Pike. 3d positional integration from image sequences.
Image Vision Comput., 6(2):87–90, May 1988.

[HS88] Chris Harris and Mike Stephens. A combined corner and edge detector. In
In Proc. of Fourth Alvey Vision Conference, pages 147–151, 1988.

[Jaz70] Andrew H. Jazwinski. Stochastic Processes and Filtering Theory. Aca-
demic Press, April 1970.

[JL00] M. Jogan and A. Leonardis. Robust localization using panoramic view-
based recognition. In Pattern Recognition, 2000. Proceedings. 15th Inter-
national Conference on, volume 4, pages 136–139 vol.4, 2000.

[KKJ11] Abhijit Kundu, K Madhava Krishna, and C. V. Jawahar. Realtime multibody
visual slam with a smoothly moving monocular camera. In ICCV, pages
2080–2087, 2011.

[KM07] Georg Klein and David Murray. Parallel tracking and mapping for small
AR workspaces. In ISMAR, 2007.

[KM08] Georg Klein and David Murray. Improving the agility of keyframe-based
SLAM. In ECCV, 2008.

[KRC+11] Bernd Manfred Kitt, Joern Rehder, Andrew D Chambers, Miriam Schon-
bein, Henning Lategahn, and Sanjiv Singh. Monocular visual odometry
using a planar road model to solve scale ambiguity. In Proceedings of
European Conference on Mobile Robots, Sep 2011.

[KRE60] Kalman, Rudolph, and Emil. A New Approach to Linear Filtering and Pre-
diction Problems. Transactions of the ASME–Journal of Basic Engineering,
82(Series D):35–45, 1960.

138

[KSC13] C. Kerl, J. Sturm, and D. Cremers. Robust odometry estimation for RGB-D
cameras. In ICRA, pages 3748–3754, 2013.

[KSD+09] Rainer Kümmerle, Bastian Steder, Christian Dornhege, Michael Ruhnke,
Giorgio Grisetti, Cyrill Stachniss, and Alexander Kleiner. On measuring
the accuracy of SLAM algorithms. Autonomous Robots, 27(4):387–407,
2009.

[LA09] M.I. A. Lourakis and A.A. Argyros. SBA: A Software Package for Generic
Sparse Bundle Adjustment. ACM Trans. Math. Soft., 36(1):1–30, 2009.

[LH87] H. C. Longuet-Higgins. A computer algorithm for reconstructing a scene
from two projections. In M. A. Fischler and O. Firschein, editors, Readings
in Computer Vision: Issues, Problems, Principles, and Paradigms, pages
61–62. Kaufmann, Los Altos, CA., 1987.

[LK81] Bruce D. Lucas and Takeo Kanade. An iterative image registration tech-
nique with an application to stereo vision. In Proceedings of the 7th
International Joint Conference on Artificial Intelligence, IJCAI’81, pages
674–679, San Francisco, CA, USA, 1981. Morgan Kaufmann Publishers
Inc.

[LKSV07] Ting Li, V. Kallem, D. Singaraju, and R. Vidal. Projective factorization of
multiple rigid-body motions. In CVPR, pages 1–6, June 2007.

[LMCG99] S. Lacroix, A. Mallet, R. Chatila, and L. Gallo. Rover Self Localization in
Planetary-Like Environments. In M. Perry, editor, Artificial Intelligence,
Robotics and Automation in Space, volume 440 of ESA Special Publication,
page 433, August 1999.

[LMNF09] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. Epnp: An ac-
curate o(n) solution to the pnp problem. International Journal of Computer
Vision, 81(2):155–166, February 2009.

[Low04] David G. Lowe. Distinctive image features from scale-invariant keypoints.
IJCV, 60(2):91–110, 2004.

[MCM07] Mark Maimone, Yang Cheng, and Larry Matthies. Two years of visual
odometry on the mars exploration rovers. Journal of Field Robotics,
24(3):169–186, 2007.

[MGK00] J. Matas, C. Galambos, and J. Kittler. Robust detection of lines using the
progressive probabilistic hough transform. Computer Vision and Image
Understanding, 78(1):119 – 137, 2000.

139

[ML09] Marius Muja and David G. Lowe. Fast approximate nearest neighbors with
automatic algorithm configuration. In VISSAPP, pages 331–340. INSTICC
Press, 2009.

[ML12] Marius Muja and David G. Lowe. Fast matching of binary features. In
Computer and Robot Vision (CRV), pages 404–410, 2012.

[MLD+06] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd. Real
time localization and 3d reconstruction. In Computer Vision and Pattern
Recognition, 2006 IEEE Computer Society Conference on, volume 1, pages
363–370, 2006.

[Mor80] Hans Peter Moravec. Obstacle Avoidance and Navigation in the Real World
by a Seeing Robot Rover. PhD thesis, Stanford University, Stanford, CA,
USA, 1980. AAI8024717.

[MS87] L. Matthies and S.A. Shafer. Error modeling in stereo navigation. Robotics
and Automation, IEEE Journal of, 3(3):239–248, 1987.

[MS06] A. Milella and R. Siegwart. Stereo-based ego-motion estimation using
pixel tracking and iterative closest point. In Computer Vision Systems.
IEEE International Conference on, pages 21–21, Jan 2006.

[MSKS03] Yi Ma, Stefano Soatto, Jana Kosecka, and S. Shankar Sastry. An Invitation
to 3-D Vision: From Images to Geometric Models. SpringerVerlag, 2003.

[NCH06] P. Newman, D. Cole, and K. Ho. Outdoor slam using visual appearance and
laser ranging. In Robotics and Automation, 2006. ICRA 2006. Proceedings
2006 IEEE International Conference on, pages 1180–1187, May 2006.

[Nis04] David Nistér. An efficient solution to the five-point relative pose problem.
PAMI, 26(6):756–777, 2004.

[NNB04] David Nistér, Oleg Naroditsky, and James Bergen. Visual odometry. In
CVPR, pages 652–659, 2004.

[NNB06] David Nistér, Oleg Naroditsky, and James Bergen. Visual odometry for
ground vehicle applications. Journal of Field Robotics, 23(1):3–20, 2006.

[NS06] David Nister and Henrik Stewenius. Scalable recognition with a vocabulary
tree. In Proceedings of Computer Vision and Pattern Recognition, IEEE
Computer Society Conference on, CVPR, pages 2161–2168, Washington,
DC, USA, 2006. IEEE Computer Society.

[Oli05] John Oliensis. The least-squares error for structure from infinitesimal
motion. IJCV, 61(3):259–299, 2005.

140

[OLT06] E. Olson, J. Leonard, and S. Teller. Fast iterative alignment of pose graphs
with poor initial estimates. In Robotics and Automation, 2006. ICRA 2006.
Proceedings 2006 IEEE International Conference on, pages 2262–2269,
May 2006.

[OMSM00] C.F. Olson, L.H. Matthies, M. Schoppers, and M.W. Maimone. Robust
stereo ego-motion for long distance navigation. In Computer Vision and
Pattern Recognition, 2000. Proceedings. IEEE Conference on, volume 2,
pages 453–458 vol.2, 2000.

[OMSM01] C.F. Olson, L.H. Matthies, M. Schoppers, and M.W. Maimone. Stereo
ego-motion improvements for robust rover navigation. In ICRA, volume 2,
pages 1099–1104, 2001.

[OMSM03] Clark F. Olson, Larry H. Matthies, Marcel Schoppers, and Mark W. Mai-
mone. Rover navigation using stereo ego-motion. Robotics and Au-
tonomous Systems, 43(4):215 – 229, 2003.

[OSG10] Kemal Egemen Ozden, Konrad Schindler, and Luc Van Gool. Multibody
structure-from-motion in practice. PAMI, 32(6):1134–1141, 2010.

[OSVG07] K.E. Ozden, K. Schindler, and L. Van Gool. Simultaneous segmentation
and 3D reconstruction of monocular image sequences. In ICCV, pages 1–8,
2007.

[PMP11] A. Pretto, E. Menegatti, and E. Pagello. Omnidirectional dense large-scale
mapping and navigation based on meaningful triangulation. In Robotics
and Automation (ICRA), 2011 IEEE International Conference on, pages
3289–3296, May 2011.

[PRF11] H. Pirsiavash, D. Ramanan, and C.C. Fowlkes. Globally-optimal greedy
algorithms for tracking a variable number of objects. In CVPR, 2011.

[QCG+09] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y. Ng. Ros: an open-source robot
operating system. In ICRA Workshop on Open Source Software, 2009.

[RPD10] Edward Rosten, Reid Porter, and Tom Drummond. FASTER and better: A
machine learning approach to corner detection. PAMI, 32:105–119, 2010.

[RRKB11a] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An efficient alter-
native to sift or surf. In Computer Vision (ICCV), 2011 IEEE International
Conference on, pages 2564–2571, Nov 2011.

[RRKB11b] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB: An efficient
alternative to SIFT or SURF. In ICCV, pages 2564 –2571, 2011.

141

[SBK10] Narayanan Sundaram, Thomas Brox, and Kurt Keutzer. Dense point
trajectories by GPU-accelerated large displacement optical flow. In ECCV,
pages 438–451, 2010.

[SC14] Shiyu Song and Manmohan Chandraker. Robust scale estimation in real-
time monocular sfm for autonomous driving. In Computer Vision and
Pattern Recognition, IEEE International Conference on, Columbus, Ohio,
USA, June 2014.

[SCG13] Shiyu Song, Manmohan Chandraker, and Clark C. Guest. Parallel, real-
time monocular visual odometry. In ICRA, 2013.

[SF11] D. Scaramuzza and F. Fraundorfer. Visual odometry: Part i - the first 30
years and fundamentals. IEEE Robotics Automation Magazine, 18(4):80–
92, 2011.

[SFPS09] D. Scaramuzza, F. Fraundorfer, M. Pollefeys, and R. Siegwart. Absolute
scale in structure from motion from a single vehicle mounted camera by
exploiting nonholonomic constraints. In ICCV, pages 1413–1419, 2009.

[SFS09] D. Scaramuzza, F. Fraundorfer, and R. Siegwart. Real-time monocular
visual odometry for on-road vehicles with 1-point ransac. In Robotics and
Automation, 2009. ICRA ’09. IEEE International Conference on, pages
4293–4299, May 2009.

[SMD10a] H. Strasdat, J. M. M. Montiel, and A. Davison. Scale drift-aware large
scale monocular slam. In Proceedings of Robotics: Science and Systems,
Zaragoza, Spain, June 2010.

[SMD10b] H. Strasdat, J. M M Montiel, and A.J. Davison. Real-time monocular slam:
Why filter? In Robotics and Automation (ICRA), 2010 IEEE International
Conference on, pages 2657–2664, May 2010.

[SMD12] Hauke Strasdat, J.M.M. Montiel, and Andrew J. Davison. Visual slam:
Why filter? Image and Vision Computing, 30(2):65 – 77, 2012.

[SS08] D. Scaramuzza and R. Siegwart. Appearance-guided monocular omnidi-
rectional visual odometry for outdoor ground vehicles. Robotics, IEEE
Transactions on, 24(5):1015–1026, 2008.

[ST94a] Jianbo Shi and Carlo Tomasi. Good features to track. In Computer
Vision and Pattern Recognition, 1994. Proceedings CVPR ’94., 1994 IEEE
Computer Society Conference on, pages 593–600, Jun 1994.

[ST94b] Jianbo Shi and Carlo Tomasi. Good features to track. In CVPR, pages
593–600, 1994.

142

[SUW06] Konrad Schindler, James U, and Hanzi Wang. Perspective n-view multi-
body structure-and-motion through model selection. In ECCV, volume
3951, pages 606–619, 2006.

[TMD+06] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel,
P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley,
M. Palatucci, V. Pratt, P. Stang, S. Strohband, C. Dupont, L.-E. Jendrossek,
C. Koelen, C. Markey, C. Rummel, J. van Niekerk, E. Jensen, P. Alessan-
drini, G. Bradski, B. Davies, S. Ettinger, A. Kaehler, A. Nefian, and
P. Mahoney. Winning the darpa grand challenge. Journal of Field Robotics,
2006.

[TMHF00] Bill Triggs, Philip Mclauchlan, Richard Hartley, and Andrew Fitzgibbon.
Bundle adjustment - a modern synthesis. In Vision Algorithms: Theory
and Practice, LNCS, pages 298–375. Springer Verlag, 2000.

[TPD08] Jean-Philippe Tardif, Yanis Pavlidis, and Kostas Daniilidis. Monocular
visual odometry in urban environments using an omnidirectional camera. In
Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International
Conference on, pages 2531–2538, Sept 2008.

[UN00] I. Ulrich and I. Nourbakhsh. Appearance-based place recognition for
topological localization. In Robotics and Automation, 2000. Proceedings.
ICRA ’00. IEEE International Conference on, volume 2, pages 1023–1029
vol.2, 2000.

[WACS11] Changchang Wu, S. Agarwal, B. Curless, and S.M. Seitz. Multicore bundle
adjustment. In CVPR, pages 3057–3064, June 2011.

[WPB+08] A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality tv-l1 flow
with fundamental matrix prior. In IVCNZ, pages 1–6, Nov 2008.

[WSS11] Stephan Weiss, Davide Scaramuzza, and Roland Siegwart. Monocular-
slam-based navigation for autonomous micro helicopters in gps-denied
environments. Journal of Field Robotics, 28(6):854–874, 2011.

[WWR+13] Christian Wojek, Stefan Walk, Stefan Roth, Konrad Schindler, and Bernt
Schiele. Monocular visual scene understanding: Understanding multi-
object traffic scenes. PAMI, 35(4):882–897, 2013.

[YMU13] K. Yamaguchi, D. McAllester, and R. Urtasun. Robust monocular epipolar
flow estimation. In CVPR, pages 1862–1869, June 2013.

[ZPB07] C. Zach, T. Pock, and H. Bischof. A duality based approach for realtime
TV-L1 optical flow. In DAGM on Pattern Recognition, pages 214–223,
2007.

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Motivation and Objectives
	Challenges
	VO vs V-SLAM
	Contributions of the Dissertation
	Organization of the Dissertation

	State of the Art
	Monocular Visual Odometry
	Monocular Visual Odometry by Nister et al.
	Libviso Mono by Geiger et al.
	EKF MonoSLAM by Davison et al.
	PTAM by Klein et al.

	Scale Drift Correction
	Loop Closure
	Ground Plane Estimation
	Others

	Stereo Visual Odometry

	Preliminaries: Background
	Rigid-body Motion
	Representations of Rotation
	Rigid-body Motion

	Projective Camera
	Perspective Camera without Distortion
	Camera Distortion

	Epipolar Geometry
	Calibrated Camera
	Uncalibrated Camera
	Summary

	Homography Geometry
	Bundle Adjustment
	Kalman Filter

	Monocular Architectures
	Steady State Architecture
	Pose Module
	Epipolar Update Module
	Local Bundle Adjustment Module
	Discussion

	Keyframe and Recovery Architectures
	Keyframe
	Error-Correcting Mechanisms

	Summary

	Ground Plane Estimation
	Background
	Ground Plane Estimation
	Data Fusion with Kalman Filter

	Cues for Ground Plane Estimation
	Plane-Guided Dense Stereo
	Triangulated 3D Points
	Object Detection Cues

	Data-Driven Cue Combination
	Training
	Testing

	Results of Monocular Visual Odometry
	Benchmark Monocular Visual Odometry on KITTI
	Accuracy and Robustness of Monocular SFM
	Accuracy of Ground Plane Estimation
	Effectiveness of Ground Plane Estimation
	Effectiveness of Our SFM Architecture
	Real-time Performance
	Monocular SFM on an Additional Public Dataset

	Monocular Object Localization
	Introduction
	Related Work
	Background
	Joint Use of SFM and Detection for 3D Object Localization
	3D Coordinate System
	SFM Cues
	Object Cues
	Priors
	Joint Optimization
	Initialization

	Details of SFM Cues
	Sparse Feature Tracking
	Pose Estimation by Intensity Alignment
	Dense Feature Tracking

	Experiments
	Localization with Different Ground Plane Estimations
	Effectiveness of Different Cues
	Effectiveness of SFM Cues
	Comparison with ChoiSavarese2010

	Discussion and Future Work

	Monocular Lane Detection
	System architecture
	bird-eye-view Transform
	Line Extraction
	Lane Tracking and Temporal Integration
	Line Segment Tracking
	Lane Adding in a Keyframe
	Experiments and Results
	Conclusions

	Conclusions
	Discussion
	Future Directions

	Appendix A
	Essential Matrix Estimation
	Homography Matrix Estimation

	Bibliography

