Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Evolution of brain functional plasticity associated with increasing symptom severity in degenerative cervical myelopathy

Abstract

Background

Advanced imaging modalities have helped elucidate the cerebral alterations associated with neurological impairment caused by degenerative cervical myelopathy (DCM), but it remains unknown how brain functional network changes at different stages of myelopathy severity in DCM patients, and if patterns in network connectivity can be used to predict transition to more myelopathic stages of DCM.

Methods

This pilot cross-sectional study, which involves the collection of resting-state functional MRI (rs-fMRI) images and the modified Japanese Orthopedic Association (mJOA) score, enrolled 116 participants (99 patients and 17 healthy controls) from 2016 to 2021. The patient cohort included 21patients with asymptomatic spinal cord compression, 48 mild DCM patients, and 20 moderate or severe DCM patients. Functional connectivity networks were quantified for all participants, and the transition matrices were quantified to determine the differences in network connectivity through increasingly myelopathic stages of DCM. Additionally, a link prediction model was used to determine whether more severe stages of DCM can be predicted from less symptomatic stages using the transition matrices.

Findings

Results indicated interruptions in most connections within the sensorimotor network in conjunction with spinal cord compression, while compensatory connectivity was observed within and between primary and secondary sensorimotor regions, subcortical regions, visuospatial regions including the cuneus, as well as the brainstem and cerebellum. A link prediction model achieved an excellent predictive performance in estimating connectivity of more severe myelopathic stages of DCM, with the highest area under the receiver operator curve (AUC) of 0.927 for predicting mild DCM from patients with asymptomatic spinal cord compression.

Interpretation

A series of predictable changes in functional connectivity occur throughout the stages of DCM pathogenesis. The brainstem and cerebellum appear highly influential in optimizing sensorimotor function during worsening myelopathy. The link predication model can inclusively estimate brain alterations associated with myelopathy severity.

Funding

NIH/NINDS grants (1R01NS078494-01A1, and 2R01NS078494).

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View