UCLA

Posters

Title

Towards Automated Analysis of Minirhizotron Images

Permalink

https://escholarship.org/uc/item/75r5t68h

Authors

Brian Fulkerson Stefano Soatto William Swenson et al.

Publication Date

2005

Towards Automated Analysis of Minirhizotron Images

Brian Fulkerson Stefano Soatto William Swenson Mike Allen

UCLA Vision Lab vision.cs.ucla.edu

ccb.ucr.edu/allenlab

Michael Hamilton
James Reserve
www.jamesreserve.edu

Introduction: The scientific and technical challenges

Background

What is a minirhizotron?

A clear tube with graduated markings buried in soil with a camera that slides inside.

Scientific goal:

- Determine plant growth patterns by analyzing changes in soil structures over time
- Image analysis currently performed manually (trained subjects count roots and other structures).

Technical challenges

• Can analysis of minirhizotron images be automated?

- Need registration of multiple images in space (mosaics) and time (motion estimation for deforming structures).
- Need a classification system to detect, localize and count various structures (roots, hyphae)
- Bottom up analysis of the images may not be appropriate; may need a model based approach.

Problem Description: Automate the process of finding roots in images from a minirhizotron.

Why should an automated system be created?

- The ability to do robust, meaningful research with minirhizotron images is currently limited by the amount of time that can be spent by a human expert classifying the data.
- Automating some or all of this process could speed it up dramatically, allowing more data to be collected from more locations

The Case For Automation • What ar - Class

· What are the problems faced by an automated system?

- Classifying the images is challenging even for trained humans
- There is large within-class variability of the scale, appearance, and color of the objects in the images.
- The images are low resolution and noisy.
- The texture of the background is complex and varied, and in some cases exhibits statistics similar to the structures of interest.

Towards Automation: Preprocessing minirhizotron images

Developing Tools to Aid in Image Analysis

• Minirhizotron Software:

- Will be used to speed up manual analysis, and to provide training data for automatic (supervised) classification.
- Native, cross platform image analysis program.
 - Written in QT / OpenCV, compiles on Windows / Mac / Linux
- Portable / reusable filter architecture applicable to many other problems
 - Allows new filters to be written in OpenCV with minimal effort.
 - · Leverages existing OpenCV functionality.
- XML database of known images and labeled data based on filename
 - · Will aid in training supervised learning algorithms.
- Allows forward and reverse navigation in time or location.

Filters

- Gaussian Smoothing + Anisotropic Diffusion: Smooth the noise from an image while preserving edge-like structures.
 - · Images with complex textures have many "edge-like" structures.
 - Pre-smooth with a Gaussian that is appropriate for the scale of the feature we are trying to detect.
- Intensity Thresholding: Simple first pass approach for segmentation
 - Yields surprisingly good results on filtered images.
 - Tube markers (in green on Figure 2) are very strong features and are often grouped with roots. Potentially use color information to disambiguate tube markings and structures of interest

Current Research

- Segmentation via normalized cuts or kernel k-means.
- Exploring model based approaches such as those found in modern satellite road tracking algorithms.
- Developing supervised learning algorithms to move toward automatic classification of the data using:
 - Multi-scale representations based on the response of filter banks (wavelets, ridgelets, curvelets) or super-pixels based on segmentation from local statistics (textures and color).
 - Adaboost and other methods involving banks of weak classifiers to represent the data.

Figure 1: The minirhizotron image analysis software, running on Windows and on OS-X.

Figure 2: An example image containing a root in the lower right corner (left). The same image after Gaussian smoothing (right).

Figure 3: Anisotropic diffusion blurs the background texture while preserving the root (left). After thresholding, the resulting regions correspond to the root and the tube markings (right).