Skip to main content
eScholarship
Open Access Publications from the University of California

Isotherm-Based Thermodynamic Model for Electrolyte and Nonelectrolyte Solutions Incorporating Long- and Short-Range Electrostatic Interactions

  • Author(s): Ohm, PB
  • Asato, C
  • Wexler, AS
  • Dutcher, CS
  • et al.

Published Web Location

https://doi.org/10.1021/jp512646k
Abstract

© 2015 American Chemical Society. The activities of solutes and solvents in solutions govern numerous physical phenomena in a wide range of practical applications. In prior work, we used statistical mechanics and multilayer adsorption isotherms to develop a transformative model for capturing thermodynamic properties of multicomponent aqueous solutions over the entire concentration range (Dutcher et al. J. Phys. Chem. 2011, 2012, 2013). That model needed only a few adsorption energy values to represent the solution thermodynamics of each solute. In the current work, we posit that the adsorption energies are due to dipole-dipole electrostatic forces in solute-solvent and solvent-solvent interactions. This hypothesis was tested in aqueous solutions on (a) 37 1:1 electrolytes, over a range of cation sizes, from H+to tetrabutylammonium, for common anions including Cl-, Br-, I-, NO3-, OH-, ClO4-, and (b) 20 water-soluble organic molecules including alcohols and polyols. For both electrolytes and organic solutions, the energies of adsorption can be calculated with the dipole moments of the solvent, molecular size of the solvent and solute, and the solvent-solvent and solvent-solute intermolecular bond lengths. Many of these physical properties are available in the literature, with the exception of the solute-solvent intermolecular bond lengths. For those, predictive correlations developed here enable estimation of solute and solvent solution activities for which there are little or no activity data. (Graph Presented).

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View