Skip to main content
eScholarship
Open Access Publications from the University of California

TINKTEP: A fully self-consistent, mutually polarizable QM/MM approach based on the AMOEBA force field

  • Author(s): Dziedzic, J
  • Mao, Y
  • Shao, Y
  • Ponder, J
  • Head-Gordon, T
  • Head-Gordon, M
  • Skylaris, CK
  • et al.

Published Web Location

https://doi.org/10.1063/1.4962909
Abstract

© 2016 Author(s). We present a novel quantum mechanical/molecular mechanics (QM/MM) approach in which a quantum subsystem is coupled to a classical subsystem described by the AMOEBA polarizable force field. Our approach permits mutual polarization between the QM and MM subsystems, effected through multipolar electrostatics. Self-consistency is achieved for both the QM and MM subsystems through a total energy minimization scheme. We provide an expression for the Hamiltonian of the coupled QM/MM system, which we minimize using gradient methods. The QM subsystem is described by the onetep linear-scaling DFT approach, which makes use of strictly localized orbitals expressed in a set of periodic sinc basis functions equivalent to plane waves. The MM subsystem is described by the multipolar, polarizable force field AMOEBA, as implemented in tinker. Distributed multipole analysis is used to obtain, on the fly, a classical representation of the QM subsystem in terms of atom-centered multipoles. This auxiliary representation is used for all polarization interactions between QM and MM, allowing us to treat them on the same footing as in AMOEBA. We validate our method in tests of solute-solvent interaction energies, for neutral and charged molecules, demonstrating the simultaneous optimization of the quantum and classical degrees of freedom. Encouragingly, we find that the inclusion of explicit polarization in the MM part of QM/MM improves the agreement with fully QM calculations.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View