Skip to main content
eScholarship
Open Access Publications from the University of California

From Sugars to Wheels: The Conversion of Ethanol to 1,3-Butadiene over Metal-Promoted Magnesia-Silicate Catalysts.

  • Author(s): Shylesh, Sankaranarayanapillai
  • Gokhale, Amit A
  • Scown, Corinne D
  • Kim, Daeyoup
  • Ho, Christopher R
  • Bell, Alexis T
  • et al.
Abstract

1,3-Butadiene (1,3-BD) is a high-value chemical intermediate used mainly as a monomer for the production of synthetic rubbers. The ability to source 1,3-BD from biomass is of considerable current interest because it offers the potential to reduce the life-cycle greenhouse gas (GHG) impact associated with 1,3-BD production from petroleum-derived naphtha. Herein, we report the development and investigation of a new catalyst and process for the one-step conversion of ethanol to 1,3-BD. The catalyst is prepared by the incipient impregnation of magnesium oxide onto a silica support followed by the deposition of Au nanoparticles by deposition-precipitation. The resulting Au/MgO-SiO2 catalyst exhibits a high activity and selectivity to 1,3-BD and low selectivities to diethyl ether, ethylene, and butenes. Detailed characterization of the catalyst shows that the desirable activity and selectivity of Au/MgO-SiO2 are a consequence of a critical balance between the acidic-basic sites associated with a magnesium silicate hydrate phase and the redox properties of the Au nanoparticles. A process for the conversion of ethanol to 1,3-BD, which uses our catalyst, is proposed and analyzed to determine the life-cycle GHG impact of the production of this product from biomass-derived ethanol. We show that 1,3-BD produced by our process can reduce GHG emissions by as much as 155 % relative to the conventional petroleum-based production of 1,3-BD.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View