Skip to main content
Open Access Publications from the University of California

Efficient and accurate machine-learning interpolation of atomic energies in compositions with many species

  • Author(s): Artrith, N
  • Urban, A
  • Ceder, G
  • et al.

© 2017 us. Published by the American Physical Society. Machine-learning potentials (MLPs) for atomistic simulations are a promising alternative to conventional classical potentials. Current approaches rely on descriptors of the local atomic environment with dimensions that increase quadratically with the number of chemical species. In this paper, we demonstrate that such a scaling can be avoided in practice. We show that a mathematically simple and computationally efficient descriptor with constant complexity is sufficient to represent transition-metal oxide compositions and biomolecules containing 11 chemical species with a precision of around 3 meV/atom. This insight removes a perceived bound on the utility of MLPs and paves the way to investigate the physics of previously inaccessible materials with more than ten chemical species.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View