Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Electrically Fueled Active Supramolecular Materials

Abstract

Fuel-driven dissipative self-assemblies play essential roles in living systems, contributing both to their complex, dynamic structures and emergent functions. Several dissipative supramolecular materials have been created using chemicals or light as fuel. However, electrical energy, one of the most common energy sources, has remained unexplored for such purposes. Here, we demonstrate a new platform for creating active supramolecular materials using electrically fueled dissipative self-assembly. Through an electrochemical redox reaction network, a transient and highly active supramolecular assembly is achieved with rapid kinetics, directionality, and precise spatiotemporal control. As electronic signals are the default information carriers in modern technology, the described approach offers a potential opportunity to integrate active materials into electronic devices for bioelectronic applications.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View