Skip to main content
eScholarship
Open Access Publications from the University of California

Computational prediction of the osmoregulation network in Synechococcus sp. WH8102

  • Author(s): Mao, Xizeng
  • Olman, Victor
  • Stuart, Rhona
  • Paulsen, Ian T
  • Palenik, Brian
  • Xu, Ying
  • et al.
Abstract

Abstract Background Osmotic stress is caused by sudden changes in the impermeable solute concentration around a cell, which induces instantaneous water flow in or out of the cell to balance the concentration. Very little is known about the detailed response mechanism to osmotic stress in marine Synechococcus, one of the major oxygenic phototrophic cyanobacterial genera that contribute greatly to the global CO2 fixation. Results We present here a computational study of the osmoregulation network in response to hyperosmotic stress of Synechococcus sp strain WH8102 using comparative genome analyses and computational prediction. In this study, we identified the key transporters, synthetases, signal sensor proteins and transcriptional regulator proteins, and found experimentally that of these proteins, 15 genes showed significantly changed expression levels under a mild hyperosmotic stress. Conclusions From the predicted network model, we have made a number of interesting observations about WH8102. Specifically, we found that (i) the organism likely uses glycine betaine as the major osmolyte, and others such as glucosylglycerol, glucosylglycerate, trehalose, sucrose and arginine as the minor osmolytes, making it efficient and adaptable to its changing environment; and (ii) σ38, one of the seven types of σ factors, probably serves as a global regulator coordinating the osmoregulation network and the other relevant networks.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View