Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

High Contrast Ultrasonic Method With Multi-Spatiotemporal Compounding for Monitoring Catheter-Based Ultrasound Thermal Therapy: Development and Ex Vivo Evaluations

Abstract

Objective

Changes in ultrasound backscatter energy (CBE) imaging can monitor thermal therapy. Catheter-based ultrasound (CBUS) can treat deep tumors with precise spatial control of energy deposition and ablation zones, of which CBE estimation can be limited by low contrast and robustness due to small or inconsistent changes in ultrasound data. This study develops a multi-spatiotemporal compounding CBE (MST-CBE) imaging approach for monitoring specific to CBUS thermal therapy.

Methods

Ex vivo thermal ablations were performed with stereotactic positioning of a 180° directional CBUS applicator, temperature monitoring probes, endorectal US probe, and subsequent lesion sectioning and measurement. Five frames of raw radiofrequency data were acquired throughout in 15s intervals. Using window-by-window estimation methods, absolute and positive components of MST-CBE images at each point were obtained by the compounding ratio of squared envelope data within an increasing spatial size in each short-time window.

Results

Compared with conventional US, Nakagami, and CBE imaging, the detection contrast and robustness quantified by tissue-modification-ratio improved by 37.2 ± 4.7 (p < 0.001), 37.5 ± 5.2 (p < 0.001), and 6.4 ± 4.0 dB (p < 0.05) in the MST-CBE imaging, respectively. Correlation coefficient and bias between cross-sectional dimensions of the ablation zones measured in tissue sections and estimated from MST-CBE were up to 0.91 (p < 0.001) and -0.02 mm2, respectively.

Conclusion

The MST-CBE approach can monitor the detailed changes within target tissues and effectively characterize the dimensions of the ablation zone during CBUS energy deposition.

Significance

The MST-CBE approach could be practical for improved accuracy and contrast of monitoring and evaluation for CBUS thermal therapy.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View