Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

CFTR modulator therapy for cystic fibrosis caused by the rare c.3700A>G mutation

Abstract

Background

The c.3700A>G mutation, a rare cystic fibrosis (CF)-causing CFTR mutation found mainly in the Middle East, produces full-length transcript encoding a missense mutation (I1234V-CFTR), and a cryptic splice site that deletes 6 amino acids in nucleotide binding domain 2 (I1234del-CFTR).

Methods

FRT cell models expressing I1234V-CFTR and I1234del-CFTR were generated. We also studied an I1234del-CFTR-expressing gene-edited human bronchial (16HBE14o-) cell model, and primary cultures of nasal epithelial cells from a c.3700A>G homozygous subject. To identify improved mutation-specific CFTR modulators, high-throughput screening was done using I1234del-CFTR-expressing FRT cells. Motivated by the in vitro findings, Trikafta was tested in two c.3700A>G homozygous CF subjects.

Results

FRT cells expressing full-length I1234V-CFTR had similar function to that of wildtype CFTR. I1234del-CFTR showed reduced activity, with modest activation seen with potentiators VX-770 and GLPG1837, correctors VX-809, VX-661 and VX-445, and low-temperature incubation. Screening identified novel arylsulfonyl-piperazine and spiropiperidine-quinazolinone correctors, which when used in combination with VX-445 increased current ~2-fold compared with the VX-661/VX-445 combination. The combination of VX-770 with arylsulfonamide-pyrrolopyridine, piperidine-pyridoindole or pyrazolo-quinoline potentiators gave 2-4-fold greater current than VX-770 alone. Combination potentiator (co-potentiator) efficacy was also seen in gene-edited I1234del-CFTR-expressing human bronchial epithelial cells. In two CF subjects homozygous for the c.3700A>G mutation, one subject had a 27 mmol/L decrease in sweat chloride and symptomatic improvement on Trikafta, and a second subject showed a small improvement in lung function.

Conclusions

These results support the potential benefit of CFTR modulators, including co-potentiators, for CF caused by the c.3700A>G mutation.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View