Climate‐Driven Limits to Future Carbon Storage in California's Wildland Ecosystems
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Climate‐Driven Limits to Future Carbon Storage in California's Wildland Ecosystems

Abstract

Abstract: Enhanced ecosystem carbon storage is a key component of many climate mitigation pathways. The State of California has set an ambitious goal of carbon neutrality by 2045, relying in part on enhanced carbon sequestration in natural and working lands. We used statistical modeling, including random forest and climate analog approaches, to explore the climate‐driven challenges and uncertainties associated with the goal of long‐term carbon sequestration in forests and shrublands. We found that seasonal patterns of temperature and precipitation are strong controllers of the spatial distribution of aboveground live carbon. RCP8.5 projections of temperature and precipitation are estimated to drive decreases of 16.1% ± 7.5% in aboveground live carbon by the end of the century, with coastal areas of central and northern California and low/mid‐elevation mountain areas being most vulnerable. With RCP4.5 projections, declines are less severe, with 8.8% ± 5.3% carbon loss. In either scenario, increases in temperature systematically cause biomass declines, and the spread of projected precipitation across 32 CMIP5 models contributes to substantial uncertainty in the magnitude of that decline. Projected changes in the environmental niche for the 20 most biomass‐dominant tree species revealed widespread replacement of conifers by oak species in low elevation regions of central and northern California, with a corresponding decline in carbon storage depending on expected migration rates. The spatial patterns of vulnerability we identify may allow policymakers to assess where carbon sequestration in aboveground biomass is an appropriate part of a climate mitigation portfolio, and where future climate‐driven carbon losses may be a liability.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View