Skip to main content
Open Access Publications from the University of California

Hydrogen bond strength and network structure effects on hydration of non-polar molecules

  • Author(s): Lynden-Bell, RM
  • Giovambattista, N
  • Debenedetti, PG
  • Head-Gordon, T
  • Rossky, PJ
  • et al.

We measure the solvation free energy, Δμ*, for hard spheres and Lennard-Jones particles in a number of artificial liquids made from modified water models. These liquids have reduced hydrogen bond strengths or altered bond angles. By measuring Δμ* for a number of state points at P = 1 bar and different temperatures, we obtain solvation entropies and enthalpies, which are related to the temperature dependence of the solubilities. By resolving the solvation entropy into the sum of the direct solute-solvent interaction and a term depending on the solvent reorganisation enthalpy we show that, although the hydrophobic effect in water at 300 K arises mainly from the small molecular size, its temperature dependence is anomalously low because the reorganisation enthalpy of liquid water is unusually small. We attribute this to the strong tetrahedral network which results from both the molecular geometry and the hydrogen bond strength. © 2011 the Owner Societies.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View