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ABSTRACT OF THE DISSERTATION

Speech Enhancement and Source Separation using Probabilistic Models

by

Jiucang Hao
Doctor of Philosophy in Physics

University of California, San Diego, 2008

Professor Terrence Sejnowski, Co-Chair

Professor Herbert Levine, Co-Chair

Statistical signal processing has been very successful. We proposed novel prob-

abilistic models and developed efficient algorithms for two important problems: speech

enhancement and source separation.

Part I focused on the speech enhancement. We developed two models with efficient

algorithms. The first one assumed a Gaussian Mixture Model (GMM) in the log-spectral

domain for speech prior which was trained by expectation maximization (EM) algorithm.

Three approximations were employed to enhance the computational efficiency. The Laplace

method estimated the signal by computing the mode of the posterior distribution, either

in the frequency domain or in the log-spectrum domain. The Gaussian approximation

converted the GMM in the log-spectrum domain into a GMM in the frequency domain by

minimizing the KL-divergency. It provided an efficient gain and noise spectrum estimation

xv



with the EM algorithm. The second one used a Gaussian scale mixture model (GSMM) as

speech prior. This model specified a stochastic dependency between the log-spectra and the

frequency components which can be estimated simultaneously with GSMM. The algorithms

for training the model and signal estimation were developed. All these algorithms were

evaluated by applying them to enhance the speeches corrupted by the speech shaped noise

(SSN). The experimental results demonstrated that the proposed algorithms improved the

signal-to-noise ratio and lowered the word recognition error rate.

In part II, a novel probabilistic framework based on Independent Vector Analysis

(IVA) was proposed to separate the convolutive mixture of sources. IVA assumed a multidi-

mensional GMM for the source priors. The joint modeling of all frequency bins originating

from the same source prevented the permutation disorder that associated with independent

component analysis (ICA). The GMM source priors could adapt to the statistics of the

sources and enable IVA to separate different type of signals. We developed EM algorithms

for both the noiseless case and noisy case. For noiseless case, an online algorithm was devel-

oped to handle non-stationary environments. For noisy case, noise reduction was achieved

together with the separation processes. The algorithms were evaluated by applying them

to separate the mixtures of speech and music. The experimental results showed improved

performance over other algorithms.

xvi



1

Introduction to Probabilistic

Models and Acoustic Signals

Probabilistic models have been very powerful and successful in many fields, for

example, Bayesian data analysis, signal processing, communications, financial analysis, and

bioinformatics. As the focus of the machine learning research, researchers have been ac-

tively developing more precise models and efficient algorithms. The main advantage of the

probabilistic models comes from the allowance of uncertainty and they are appropriate for

problems with unknown or nonexist exact processes. Consider the process of the speech

generation and recording. The repeated recordings of the same content are different. So

it is not possible to specify the exact relationship between the recorded signals and their

content. However, human can easily understand the content of the recorded signals, because

they are not completely random conditioned on that the noise is small. Thus we need to

specify the stochastic relationship and the probabilistic models are a perfect fit.

Another advantage of the probabilistic models comes for the inference mechanism.

1



2

Due to the stochastic relationship, the clean signals cannot be extracted from the obser-

vations deterministically. But we can say something about the signal from a probabilistic

perspective. The Bayesian inference is to compute the posterior distribution, conditioned on

the observations. Reconsider the speech problem. The human perception can be thought as

an inference. Listening to the recorded signal, human can infer the words and the content.

This idea has been successfully applied to speech recognition engines.

In this chapter, we present the preliminaries for the probabilistic models and the

applications to speech enhancement and source separation.

1.1 Preliminaries for Probabilistic Models

There are four problems for probabilistic models: model specification, parameter

estimation, Bayesian inference and approximations to enhance computational efficiency.

1.1.1 Model Specification

A probabilistic model is determined by the prior distribution, the conditional dis-

tribution and the parameters. Let x and y be two random variables. We write their joint

distribution as

p(x, y) = p(y|x)p(x|θ) (1.1)

The p(x|θ) is the prior distribution with parameter θ. In general, the prior contains the

structures we are looking for. For example, a density in a lower dimensional space could

extract the important components that explain the observations. A peaky shape for p(x)

enforces the sparseness for efficient coding. It can also model the dynamics and the Kalman

filter is an example. The conditional probability p(y|x) describes the dependency of y on x
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which is often considered as noise and assumed to be a Gaussian. The y obeys some process

specified by p(x) in a stochastic manner.

1.1.2 Parameter Estimation

The parameters θ can be either learned from the training set or estimated from

the observations, with maximum likelihood. Let {y1, · · · , yT } be the training set and θ be

the parameters for the prior p(x|θ). Assuming the independent samples, the likelihood is

given by

L(θ) =
∑
n

log p(yn|θ) =
∑
n

log
∫
dxnp(yn|xn)p(xn|θ) (1.2)

≥
∑
n

∫
dxnq(xn) log

p(yn|xn)p(xn|theta)
q(xn)

(1.3)

= F(q, θ) (1.4)

The inequality holds for any q(xn) and the F(q, θ) = L(θ) when q(xn) = p(xn|yn, θ), the

posterior density.

The maximum likelihood estimator for θ is

θ̂ = arg max
θ

∑
n

log p(yn|θ) (1.5)

which can be efficiently estimated by the Expectation Maximization (EM) algorithm [1]

that iterates the E-step and M-step,

E-step: q(xn) = p(xn|yn, θ) =
p(yn|xn)p(xn|θ)

p(yn)
(1.6)

M-step: θ = arg maxF(q, θ) (1.7)
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The E-step computes the posterior probability and the M-step updates the parameters.

One appealing property of EM algorithm is that the cost function F(q, θ) increases mono-

tonically, which is very useful to monitor the convergence.

1.1.3 Bayesian Inference

Bayesian inference extracts the information about x from the observation y based

on the model assumptions. The x is not determined by y when they are related stochasti-

cally. Fortunately, Bayesian theory offers a systematic inference mechanism for the hidden

variable x by computing its posterior distribution, per Bayes’ rule

p(xn|yn, θ) =
p(yn|xn)p(xn, θ)

p(yn)
(1.8)

Sometimes it is necessary to use the point estimators, of which the minimum mean square

error (MMSE) and the maximum a posterior (MAP) estimators are the most popular ones

MMSE: x̂n =
∫
xnp(xn|yn)dxn (1.9)

MAP: x̂n = arg max
xn

p(xn|yn) (1.10)

1.1.4 Approximations

Exact parameter estimation and inference for the probabilistic models are rarely

tractable. Approximations are required to enhance the computational efficiency. The bot-

tleneck of the EM algorithm is the E-step which is often very hard. The Gaussian approxi-

mation, Laplace method and variational approximation are the popular ones that are used

in this thesis.
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The Gaussian approximation computes the mean and the covariance of the poste-

rior probability,

µn =
∫
xnp(xn|yn)dxn (1.11)

1
νn

=
∫

(xn − µn)2p(xn|yn)dxn (1.12)

The resulted Gaussian, p(xn|yn, θ) ≈ N (xn|µn, νn), has the correct first and second order

statistics.

The Laplace method computes the Taylor expansion of the likelihood around its

mode (the MAP) to the second order

log p(xn|yn, θ) ≈ c+
1
2
H(xn − µn)2 (1.13)

where H = ∂2 log p(xn|yn,θ)
∂x2
n

is the Hessian. This Laplace method, p(xn|yn, θ) ≈ N (xn|µn, H),

focuses on the most likely region of the posterior distribution and has the correct MAP

value.

The variational approximation [2] is very effective for models with more than one

hidden variables. We consider two hidden variables here x and ξ for simplicity. When the

posterior density is hard to compute, a factorized p(xn, ξn|yn) ≈ q(xn)q(ξn) is used. The

accuracy of the approximation is measured by the Kullback-Leibler (KL) divergence defined

by

D(q||p) =
∫
dxndξnq(xn)q(ξn)

p(xn, ξn|yn)
q(xn)q(ξn)

(1.14)

which is positive and equals to zero when q = p. The optimal q(xn) and q(ξ) minimize the
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Figure 1.1: Diagram for the relationship among the time domain, the frequency domain, the log-spectral
domain and the cepstral domain.

KL-divergency and they satisfy

q(xn) =
1
Z1
e
∫
q(ξn)(log p(yn|xn,ξn)+log p(xn,ξn))dξn (1.15)

q(ξn) =
1
Z2
e
∫
q(xn)(log p(yn|xn,ξn)+log p(xn,ξn))dxn (1.16)

where Z1 and Z2 are the normalization factors. The q(xn) and q(ξn) can be iteratively

optimized.

1.2 Representations of Acoustic Signals

The signals we consider in this thesis were limited to digital signals that are

recorded from microphones. The time domain signal is represented by x[t] at time t. Because

the time domain signal has less perceptual meaning, signals are transformed into other do-

mains. Frequency coefficients Xk are obtained by applying the fast Fourier transformation

(FFT) on the segmented and windowed signal x[t],

Xk =
K−1∑
n=0

x[n]e−2πikn/K (1.17)
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The log-spectra are computed as the logarithm of the magnitude of the FFT coefficients,

xk = log(|Xk|2) (1.18)

The cepstral coefficients xck are computed by applying the inverse FFT (IFFT) on the

log-spectra xk,

xck =
1
K

K−1∑
n=0

xke
2πikn/K (1.19)

Figure 1.1 shows the relationship among different domains. Due to the symmetry of the

FFT coefficients, the kth component Xk is the complex conjugate of XK−k. Thus we only

keep the first K/2 + 1 components, because the rest provides no additional information.

And IFFT contains the same property. Due to this symmetry, the cepstral coefficients xckt

are real.

1.3 Acoustic Signal Processing using Probabilistic Models

Acoustic signals, for instance speech and music, have intrinsic statistical properties.

The generation process, propagations channels, and the recording devices are subject to

uncertainty. Human or musical instrument generate different acoustic waves of the same

content. The microphones have its own noise and the recordings in time domain are subject

to noise and distortion. The exact process for speech and noise does not exist. Thus

probabilistic models have been popular and successful in acoustic signal processing.

Building novel probabilistic models and developing efficient algorithms are two

focuses of this thesis. We approach the goals by controlling the model complexity and

applying efficient approximations. Two problems are addressed: speech enhancement and
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source separation.

1.3.1 Part I: Speech Enhancement

Speech enhancement improves the quality of the signals by recovering them from

the noisy recordings. The speech model is described by a prior probability p(x) which

can be trained by samples of clean signals or estimated from noisy observations y. Speech

enhancement estimate the original signal x from y based on the model assumptions. As

in Eq.(1.8), the posterior distribution contains all the information about x. To reconstruct

the signal, a point estimator for x is necessary. Two approaches are commonly used: the

MMSE estimator given by Eq.(1.10) and the MAP estimator given by Eq.(1.10).

In part I, speech enhancement algorithms based on Bayesian inference are devel-

oped. First, we derive several approximations to infer the signals using the GMM in the

log-spectral domain as a speech prior. Under the Gaussian approximation, an EM algorithm

for gain and noise spectrum estimation is developed. Second, a novel Gaussian scale mix-

ture model with two hidden variables is proposed for speech signals. This model provides

the inference for both the frequency component and the log-spectra, which are useful for

different applications: the estimated FFT coefficients provide better signal reconstruction

in the time domain, while the estimated log-spectra are more appropriate for recognizing

the noisy speech.

1.3.2 Part II: Source Separation

Different from speech enhancement, the source separation uses two microphones

and separate the mixed signals originating from two sources. The key assumption is that the

two sources are statistically independent. Let X = (X1, X2)T denote the original signals
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from the two sources, and Y = (Y1, Y2)T be the recorded signals. The independency is

described by the factorized source prior p(X1)p(X2). The shape of the density reflects

the statistics of the signal and the product form enforces the independency. Independent

vector analysis (IVA) assumes a linear model, y = Ax. It searches the unmixing matrix W

such that WY contains independent components and achieves separation. The maximum

likelihood estimator for W is

Ŵ = arg max
W

log
∫
p(Y|X,W )p(X|θ)dX (1.20)

In part II, we develop several algorithms for IVA by maximizing the likelihood.

Signals are estimated using the MMSE estimator. Efficient EM algorithms to separate

speech from music are developed. An online algorithm is proposed to handle the non-

stationary environment or sources. The IVA is extended to the noisy case, where noise

reduction and source separation are achieved simultaneously.



Part I

Speech Enhancement

10
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Introduction to Speech

Enhancement

In the real environment, speech signals are usually corrupted by adverse noise,

such as competing speakers, background noise, or car noise, and also they are subject to

distortion caused by communication channels, examples are room reverberation, low qual-

ity microphones, etc. Other than specialized studios or laboratories when audio signal is

recorded, noise is recorded as well. In some circumstances such as cars in traffic, noise level

could exceed speech signal. Speech enhancement improves the signal quality by suppres-

sion of noise and reduction of distortion. Speech enhancement has many applications, for

example, mobile communications, robust speech recognition, low quality audio devices and

hearing aids.

Because of its broad application range, speech enhancement has attracted inten-

sive research for many years. The difficulty arises from the fact that precise models for both

speech signal and noise are unknown [3], thus speech enhancement problem remains unsolved

11
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[4]. A vast variety of models and speech enhancement algorithms are developed which can

be broadly classified into two categories: single microphone class and multi-microphone

class. While the second class can be potentially better because of having multiple inputs

from microphones, it also involves complicated joint modeling of microphones such as beam-

forming [4, 5, 6]. Algorithms based on a single microphone have been a major research focus

and a popular subclass is spectral domain algorithms.

It is believed that when measuring the speech quality, the spectral magnitude is

more important than its phase. Boll proposed the spectral subtraction method [7] where

the signal spectra are estimated by subtracting the noise from a noisy signal spectra. When

the noisy signal spectra fall below the noise level, the method produces negative values

which need to be suppressed to zero or replaced by a small value. Alternatively, signal

subspace methods [8] aim to find a desired signal subspace, which is disjoint with the

noise subspace. Thus the components that lie in the complementary noise subspace can

be removed. A more general task is source separation. Ideally, if there exists a domain

where the subspaces of different signal sources are disjoint, then perfect signal separation

can be achieved by projecting the source signal onto its subspace [9]. This method can

also be applied to the single channel source separation problem where the target speaker is

considered as signal and the competing speaker is considered as noise. Other approaches

include algorithms based on audio coding algorithms[10], independent component analysis

(ICA) [11] and perceptual models [12].

Performance of speech enhancement is commonly evaluated using some distortion

measures. Therefore enhanced signals can be estimated by minimizing its distortion, where

the expectation value is utilized, because of the stochastic property of speech signal. Thus
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statistical-model-based speech enhancement systems [13] have been particularly successful.

Statistical approaches require pre-specified parametric models for both the signal and the

noise. The model parameters are obtained by maximizing the likelihood of the training

samples of the clean signals using expectation maximization (EM) algorithm. Because

the true model for speech remains unknown [3], a variety of statistical models have been

proposed. Short-time spectral amplitude (STSA) estimator [14] and log-spectral amplitude

estimator (LSAE) [15] assume that the spectral coefficients of both signal and noise obey

Gaussian distribution. Their difference is that STSA minimizes the mean square error

(MMSE) of the spectral amplitude while the LSAE uses the MMSE estimator of the log-

spectra. LSAE is more appropriate because log-spectrum is believed more suitable for

speech processing. Hidden Markov model (HMM) is also developed for clean speech. The

developed HMM with gain adaptation has been applied to the speech enhancement [16] and

to the recognition of clean and noisy speech [17]. In contrast to the frequency domain models

[14, 15, 16, 17], the density of log-spectral amplitudes is modeled by a Gaussian mixture

model (GMM) with parameters trained on the clean signals [18, 19, 20]. Spectrally similar

signals are clustered and represented by their mixture components. Though the quality of

fitting the signal distribution using the GMM depends on the number of mixture components

[1], the density of the speech log-spectral amplitudes can be accurately represented with

very small number of mixtures. However, this approach leads to a complex model in the

frequency domain and exact signal estimation becomes intractable, therefore approximation

methods have been proposed. The MIXMAX algorithm [18] simplifies the mixing process

such that the noisy signal takes the maximum of either the signal or the noise, which offers a

closed-form signal estimation. Linear approximation [19, 20] expands the logarithm function
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locally using Taylor expansion. This leads to a linear Gaussian model where the estimation

is easy, although finding the point of Taylor expansion needs iterative optimization. The

spectral domain algorithms offer high quality speech enhancement while remain low in

computational complexity.

In Chapter 3, differ from the frequency domain models [14, 15, 16, 17], we start

with a GMM in the log-spectral domain as proposed in [18, 19, 20]. Converting the GMM

in the log-spectral domain into the frequency domain directly produces a mixture of log-

normal distributions which causes the signal estimation difficult to compute. Approximating

the logarithm function [18, 19, 20] is accurate only locally for a limited interval, thus may

not be optimal. We propose three methods based on Bayesian estimation. The first is to

substitute the log-normal distribution by an optimal Gaussian distribution in the Kullback-

Leibler (KL) divergence [2] sense. This way in the frequency domain, we obtain a GMM

with a closed-form signal estimation. The second approach uses Laplace method [21], where

the spectral amplitude is estimated by computing the maximum a posteriori (MAP). The

Laplace method approximates the posterior distribution by a Gaussian derived from the

second order Taylor expansion of the log likelihood. The third approach is also based on

Laplace method, but the log-spectra of signals are estimated using the MAP. The spectral

amplitudes are obtained by exponentiating their log-spectra.

The statistical approaches discussed above rely on parameters estimated from the

training samples that reflect the statistical properties of the signal. However, the statistics

of the test signals may not match those of the training signals perfectly. For example,

movement of the speakers and changes of the recording conditions are causes of mismatches.

Such difficulty can be overcome by introducing parameters that adapt to the environmental
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changes. Gain and noise adaptation partially solves this problem [16, 17]. Different from

the aspect of audio gain estimation in [14, 22] the gain here means the energy of signals

corresponding to the volume of the audio. In [19], noise estimation is proposed, but the

gain is fixed to 1. We propose an EM algorithm with efficient gain and noise estimation

under the Gaussian approximation.

In Chapter 4, we use Gaussian Scale Mixture model (GSMM) for speech prior. The

GSMM enables us estimate both the frequency coefficients and the log-spectra, which are not

possible for previous models. The estimated frequency coefficients usually produces better

signal quality measured by the signal to noise ratio (SNR), but the estimated log-spectra

usually provides lower recognition error rate, because higher SNR may not necessarily give

a lower error rate. The propose GSMM estimates both features at the same time. Instead of

forcing a deterministic relation between the log-spectra and frequency coefficients, we model

them stochastically. We model the log-spectra using a GMM following [18, 19, 20]. The

frequency coefficients obey a Gaussian density whose covariances are the exponentials of

the log-spectra. In a probabilistic setting, both features can be estimated. An approximate

EM algorithm is developed to train the model and two approaches, the Laplace method

[21] and the variational approximation [2], are used for signal estimation. The enhanced

signals can be constructed from either the estimated frequency coefficients or the estimated

log-spectra, depending on the applications.

Acknowledgement: This chapter contains materials in J. Hao, H. Attias, S. Na-

garajan, T.-W. Lee and T. Sejnowski, “Speech Enhancement, Gain, and Noise Spectrum
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3

Speech Enhancement, Gain and

Noise Spectrum Adaption Using

Approximate Bayesian Estimation

The log-spectra of speech are accurately modeled by a Gaussian mixture model.

However, signal estimation based on log-spectral domain model is hard. We derive three

methods: Gaussian approximation, Laplace method in frequency domain and Laplace

method in log-spectral domain. These methods can effectively recover the signal from the

noisy recordings. Further, the Gaussian approximation provides an efficient EM algorithm

for gain and noise spectrum adaption.

17
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3.1 Prior Speech Model and Signal Estimation

3.1.1 Speech and Noise Models

We consider the clean signal x[n] is contaminated by statistically independent and

zero mean noise n[t] in time domain. Under the assumption of additive noise, the observed

signal can be described by

y[t] = h[t] ∗ x[t] + n[t] =
∑
m

hmx[t−m] + n[t]

where h[t] is the impulse response of the filter and ∗ denotes convolution. Such signal is

often processed in frequency domain by applying FFT

Yk = HkXk +Nk (3.1)

where k denotes the frequency bin and Hk is the gain. In this chapter we will focus on

stationary channel where Hk is time-independent.

Statistical models characterize the signals by its probability density function (PDF).

The GMM, provided sufficient number of mixtures, can approximate any given density

function to arbitrary accuracy, when the parameters (weights, means, and covariances) are

correctly chosen [1, page 214]. The number of parameters for GMM is usually small and

can be reliably estimated using the EM algorithm [1]. Here, we assume the log-spectral

amplitudes {x0, · · · , xK−1} obey a GMM,

p(x) =
∑
s

p(x|s)p(s) =
∑
s

∏
k

N (xk|µks, Bks)p(s) (3.2)
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where s is the state of the mixture component. For state s, N (xk|µks, Bks) denotes a

Gaussian with mean µks and precision Bks defined as the inverse of the covariance,

N (xk|µks, Bks) =

√
|Bks

2π
|e−

Bks
2

(xk−µks)2
(3.3)

Though each frequency bin is statistically independent for state s, they are dependent

overall because the marginal density p(x) doesn’t factorize.

Use the definition of log-spectrum |xk| = log(|Xk|2), Xk can be written as Xk =

X ′k + iX ′′k , where X ′k = exk/2 cos θk and X ′′k = exk/2 sin θk are its real part and imaginary

part, θk is its phase. Assume that the phase is uniformly distributed p(θk) = 1
2π and the

PDF for xk is given in Eq(3.3), we compute the PDF for the FFT coefficients as,

p(Xk|s) = p(X ′k, X
′′
k |s) = |∂(X ′k, X

′′
k )

∂(xk, θk)
|−1p(xk|s)p(θk)

=
1

π|Xk|2
N (log(|Xk|2)|µks, Bks)

=
1

π|Xk|2

√
Bks
2π

e−
Bks

2
(log(|Xk|2)−µks)2

(3.4)

where the Jacobian |∂(X′k,X
′′
k )

∂(xk,θk) | = exk/2 = |Xk|2/2. We call this density log-normal, because

the logarithm of a random variable obeys a normal distribution. The frequency domain

model is preferred compared to the log-spectral domain, because of simple corruption dy-

namics in Eq(3.1).

We consider a noise process independent on the signal and assume the FFT coeffi-
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cients obey a Gaussian distribution with zero mean and precision matrix Γ = diag(γ1, · · · , γK)

p(N) = p(Y |X) =
∏
k

N (Yk −HkXk|0, γk)

=
∏
k

γk
π
e−γk|Yk−HkXk|

2
(3.5)

Note that this Gaussian density is for the complex variables. The precisions γk satisfy

γk = 1/E{|Yk −HkXk|2}. In contrast, Eq(3.3) is Gaussian density for the log-spectrum xk

which is a real random variable.

The parameters µks, Bks and p(s) of speech model given in Eq(3.2) are estimated

from the training samples using an EM algorithm. The details for EM algorithm can be

found in [1]. The precision matrix Γ = diag(γ1, · · · , γK) of the noise model can be estimated

from either pure noise or the noisy signals.

3.1.2 Signal Estimation

Under the assumption that the noise is independent on the signal, the full proba-

bilistic model is

p(Y,X, s) = p(Y |X)p(X|s)p(s) (3.6)

Signal estimation is done as a summation of the posterior distributions of a signal

p(X|Y ) =
∑
s

p(X|Y, s)p(s|Y ) (3.7)

For example, the MMSE estimator of a signal is given by

X̂ =
∑
s

∫
Xp(X|Y, s)dXp(s|Y ) =

∑
s

X̂sp(s|Y ) (3.8)
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where X̂s is the signal estimator for state s. This signal estimator makes intuitive sense.

Each mixture component enhances the noisy signal separately. Because the hidden state is

unknown, the MMSE estimator is consisted of the average of the individual estimators X̂s,

weighted by the posterior probability p(s|Y ). The block diagram is shown in Figure 3.1.

Noisy
Speech
Feature

y

dxsyxxpx )1,|(ˆ1

dxmsyxxpxm ),|(ˆ

)|1( ysp

)|( ymsp

Estimator
x̂

Figure 3.1: Block diagram for speech enhancement based on mixture models. Each mixture component
enhances the signal separately. The signal estimator x̂ is computed by the summation of individual
estimator weighted by its posterior probability p(s|y).

The MMSE estimator suggests a general signal estimation method for the mixture

models. First, an estimator based on each mixture state X̂s is computed. Then the posterior

state probability p(s|Y ) is calculated to reflect the contribution from state s. Finally,

the system output is the summation of the estimators for the states, weighted by the

posterior state probability. However, such straightforward scheme can not be carried out

directly for the model considered. Neither the individual estimator X̂s nor the posterior

state probability p(s|Y ) is easy to compute. The difficulty originates from the log-normal
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distributions for speech in the frequency domain. We propose approximations to compute

both terms. Because we assume a diagonal precision matrix for Bs in the GMM, X̂s can be

estimated separately for each frequency bin k.

3.2 Signal Estimation based on Approximate Bayesian Esti-

mation

Intractability often limits the application of sophisticated models. A great amount

of research has been devoted to develop accurate and efficient approximations [2, 21]. Al-

though there are popular methods that have been applied successfully, the effectiveness of

such approximations is often model dependent. As indicated in Eq(3.8), two terms, X̂s and

p(s|Y ) are required. Three algorithms are derived to estimate both terms. One is based

on Gaussian approximation. The other two methods are based on Laplace methods in the

time-frequency domain and the log-spectral domain.

3.2.1 Gaussian Approximation (Gaussian)

As shown in Section 3.1.1, the mixture of log-normal distributions for FFT coef-

ficients makes the signal estimation difficult. If we substitute the log-normal distribution

p(X|s) in Eq(3.4) by a Gaussian for each state s, the frequency domain model becomes a

GMM, which is analytically tractable.

For each state s, we choose the optimal Gaussian that minimizes the KL divergence

DKL [23],

q = arg min
q
DKL(p‖q) = arg min

q

∫
p(X) log

p(X)
q(X)

dX (3.9)
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DKL is non-negative and equals to zero if and only if p equals to q almost surely. Note

that DKL is asymmetric about its arguments p and q, and DKL(p‖q) is chosen because a

closed-form solution for q exists.

It can be shown that the optimal Gaussian q that minimizes the KL-divergence

having mean and covariance corresponding to those of the conditional probability in state s,

p(Xk|s). The mean of p(Xk|s) is zero due the assumption of a uniform phase distribution.

The second order moments are

λks =
∫
|Xk|2p(Xk|s)dXk = exp[µks + 1/(2Bks)] (3.10)

The Gaussian q(Xk|s) = N (Xk|0, 1/λks) minimizes DKL.

Under the Gaussian approximation, we have converted the GMM in log-spectral

domain into a GMM in frequency domain. We denote this converted GMM by q(X)

q(X) =
∑
s

∏
k

q(Xk|s)p(s) =
∑
s

∏
k

N (Xk|0, 1/λks)p(s) (3.11)

This approach avoids the complication from the log-normal distribution and offers efficient

signal enhancement.

Under the assumption of a Gaussian noise model in Eq(3.5), the posterior distri-

bution over X for state s is computed as

p(Xk|Yk, s) =
p(Yk|Xk)q(Xk|s)

p(Yk|s)
= N (Xk|X̂ks, φks) (3.12)
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It is a Gaussian with precision φks and mean X̂ks given by

φks = λ−1
ks + γk (3.13)

X̂ks =
γk
φks

Yk (3.14)

where λks is the covariance of the speech prior and γk is the precision of noise PDF. Note

that we have used the approximated speech prior q(Xk|s) in Eq(3.12). The individual signal

estimator for each state s is given by Eq(3.14).

The posterior state probability p(s|Y ) is computed,

p(s|Y ) =
p(Y |s)p(s)
p(Y )

(3.15)

using the Bayes’ rule. Under the speech prior q(X|s) in Eq(3.11), p(Y |s) is computed as,

p(Y |s) =
∏
k

∫
p(Yk|Xk)q(Xk|s)dXk =

∏
k

N (Yk|0, ψks) (3.16)

where the precision ψks is given by

ψks =
1

λks + 1/γk
(3.17)

Using Eq(3.8) and substituting X̂ks in Eq(3.14), p(s|Y ) in Eq(3.15), the signal

estimation function can be written as

X̂k =
∑
s

X̂ksp(s|Y ) =

(∑
s

γk
φks

p(s|Y )

)
Yk (3.18)
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Each individual estimator has resembled the power response of a Wiener filter and is a

linear function of Y . Note that the state probability depends on Y , therefore the signal

estimator in Eq(3.18) is a nonlinear function of Y . This is analogous to a time varying

Wiener filter where the signal and noise power is known or can be estimated from a short

period of the signal such as using a decision directed estimation approach [14, 22]. Here,

the temporal variation is integrated through the changes of the posterior state probability

p(s|Y ) over time.

3.2.2 Laplace Method in Frequency Domain (LaplaceFFT)

Laplace method approximates a complicated distribution using a Gaussian around

its MAP. This method suggests the MAP estimator for the original distribution which is

equivalent to the more popular MMSE estimator of the resulted Gaussian. Computing

the MAP can be considered as an optimization problem and many optimization tools can

be applied. We use the Newton’s method to find the MAP. The Laplace method is also

applied to compute the posterior state probability which requires an integration over a

hidden variable X. It expands the logarithm of the integrand around its mode using Taylor

series expansion, and transforms the process into a Gaussian integration which has a closed-

form solution. However, such method for computing the posterior state probability is not

accurate for our problem and we use an alternative approach. The final signal estimator is

constructed using Eq(3.8).

We derive the MAP estimator X̂ks for each state s. The logarithm of signal the
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posterior probability, conditioned on state s, is given by

log p(Xk|Yk, s) = log p(Yk|Xk, s) + log p(Xk|s) + c

= −γk|Yk −Xk|2 + log
1

π|Xk|2

−Bks
2

(log |Xk|2 − µks)2 + c (3.19)

where c is a constant independent on Xk. It is more convenient to represent Xk using its

magnitude rk and phase θk, Xk = rke
iθk . And we compute the MAP estimator for the

magnitude rk and phase θk for each state s,

(r̂ks, θ̂ks) = arg max
rk,θk
{log p(rk, θk|Yk, s)},

= arg max
rk,θk
{log rkp(Xk|Yk, s)}. (3.20)

Use Eq(3.19) and neglect the constant c, maximizing Eq(3.20) is equivalent to

minimizing the function h1 defined by

h1(rk, θk) = γk|Yk − rkeiθk |2 +
Bks
2

(log(r2
k)− βks)2 (3.21)

where βks = µks−1/(2Bks). It is obvious from the above equation that the MAP estimator

for θk is θ̂k = ∠Yk, which is independent on state s. And the magnitude estimator r̂ks

minimizes

h1(rk) = γk|ryk − rk|2 +
Bks
2

(log(r2
k)− βks)2 (3.22)

where ryk = |Yk|. The minimization over rk doesn’t have an analytical solution, but it can

be solved with the Newton’s method. For this we need the first order and second order
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derivatives of h1(rk) with respect to rk:

h′1(rk) = 2γk(rk − ryk) +Bks(log(r2
k)− βks)

2
rk

(3.23)

h′′1(rk) = 2γk +Bks
4
r2
k

−Bks(log(r2
k)− βks)

2
r2
k

(3.24)

Then the Newton’s method iterates

r̂ks ← r̂ks − η
h′1(r̂ks)
|h′′1(r̂ks)|

. (3.25)

The absolute value of h′′1 indicates the search of the minima of h1. The η = 1 denotes the

learning rate.

The Newton’s method is sensitive to the initialization and may give local minima.

The two squared terms in Eq(3.22) indicate that the optimal estimator r̂ks is bounded

between eβks/2 and ryk. We use both values to initialize r̂ks and select the one that produces

a smaller h1(rk). Empirically, we observe that this scheme always finds a global minimum.

The first term in Eq(3.22) is quadratic, thus Newton’s method converges to the optimal

solution faster, less than 5 iterations for our case, than other methods such as gradient

decent.

Computing the posterior state probability p(s|Y ) requires the knowledge of p(Yk|s).

Marginalization over Xk gives

p(Yk|s) =
∫
p(Yk|Xk)p(Xk|s)dXk (3.26)
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However, because of the log-normal distribution p(Xk|s) provided in Eq(3.4), the integration

can not be solved with a closed-form answer. Either numerical methods or approximations

are needed. Numerical integration is computationally expensive, leaving approximation

more efficient. We propose the following two approaches based on Laplace method and

Gaussian approximation.

Evaluate p(s|Y ) using Laplace Method

Laplace method is widely used to approximate integrals with continuous variables

in statistical models to facilitate probabilistic inference [21] such as computing the high

order statistics. It expands the logarithm of the integrand up to its second order, leading

to a Gaussian integral which has a closed-form solution. We rewrite Eq(3.26) as

p(Yk|s) =
∫
γk
π

√
Bks
2π

exp(−f(Xk)− βks)dXk (3.27)

where we define

f(Xk) = γk|Yk −Xk|2 +
Bks
2

(log(|Xk|2)− αks)2 (3.28)

and αks = µks − 1/Bks, βks = µks − 1/(2Bks). Laplace method expands the logarithm of

the integrand f(Xk) around its minimum X̂ks up to the second order and carries out a

Gaussian integration, ∫
e−f(Xk)dXk ≈ e−f(X̂ks)

√
|2π
J
| (3.29)
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where J is the Hessian of f(Xk) evaluated at X̂ks. Denote X̂ks = X̂ ′ks + iX̂ ′′ks by its real

part X̂ ′ks and imaginary part X̂ ′′ks, its magnitude by r̂ks = |X̂ks|. J is computed as

J =

 ∂2f
∂X′∂X′

∂2f
∂X′∂X′′

∂2f
∂X′∂X′′

∂2f
∂X′′∂X′′

 (3.30)

=

 ak + 4X̂′2k
r̂2
ks
bk

4X̂′kX̂
′′
k

r̂2
ks

bk

4X̂′kX̂
′′
k

r̂2
ks

bk ak + 4X̂′′2k
r̂2
ks
bk

 (3.31)

The ak and bk here are defined as

ak = 2γk +Bks(log(r̂2
ks)− αks)

2
r̂2
ks

(3.32)

bk =
Bks −Bks(log(r̂2

ks)− αks)
r̂2
ks

(3.33)

The determinant of Hessian J is

det(J) = a2
k + 4akbk (3.34)

Thus the marginal probability is

p(Yk|s) ∝
√
|Bks|e−βkse−f(X̂ks)

√
| 1
det(J)

| (3.35)

This gives p(s|Y )

p(s|Y ) =
p(Y |s)p(s)
p(Y )

∝
∏
k

p(Yk|s)p(s) (3.36)

Laplace method in essence approximates the posterior p(Xk|Yk, s) using a Gaussian

density. This is very effective in Bayesian networks where the training set includes a large
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number of samples. The posterior distribution of the (hyper-) parameters has a peaky shape

that closely resembles a Gaussian. The Laplace method has an error that scales as O(T−1),

where T is the number of samples [21]. However, the estimation here is based on a single

sample Y . Further, the normalization factor of p(Yk|s) in Eq(3.35) depends on the state

s but it is ignored. Thus this approach does not yield good experimental results and we

derive another method.

Evaluate p(s|Y ) using Gaussian Approximation

As discussed in section 3.2.1, the log-normal distribution p(Xk|s) has a Gaussian

approximation q(Xk|s) = N (Xk|0, 1/λks) given in Eq(3.11). Thus we can compute the

marginal distribution p(Yk|s) for state s as

p(Yk|s) =
∫
p(Yk|Xk)p(Xk|s)dXk

≈
∫
p(Yk|Xk)q(Xk|s)dXk

= N (0, ψks) (3.37)

where the precision ψks is given in Eq(3.17). The posterior state probability p(s|Y ) is

obtained using the Bayes’ rule. It is

p(s|Y ) =
∏
k p(Yk|s)p(s)
p(Y )

(3.38)

This approach uses the same procedure shown in section 3.2.1.

The signal estimator is the summation of the MAP estimator r̂ksei∠Yk for each
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state s weighted by the posterior state probability p(s|Y ) in Eq(3.38),

Xk =
∑
s

r̂kse
i∠Ykp(s|Y ) (3.39)

The MAP estimator for phase, ∠Yk, is utilized.

3.2.3 Laplace Method in Log-Spectral Domain (LaplaceLS)

It is suggested that the human auditory system perceives signal on the logarithmic

scale, therefore log-spectral analysis such as LSAE [15] is more suitable for speech processing.

Thus we can expect better performance if the log-spectra can be directly estimated. The

idea is to find the log-amplitude v̂k = log(|Xk|2) that maximizes the log posterior probability

log(p(X|Y, s)) given in Eq(3.19). Note that v̂k is not the MAP of p(log(|X|2)|Y, s). A similar

case is LSAE [15] where the expectation of the log-spectral error is taken over p(X) rather

than p(log |X|). Optimization over vk also has the advantage of avoiding negative amplitude

due to local minima.

Substitute vk = log(|Xk|2) into Eq(3.19), we compute the MAP estimator for the

phase and log-amplitude vk. Note that the optimal phase is that of the noisy signal, θ̂k =

∠Yk. The MAP estimator for the log-amplitude maximizes Eq(3.19), which is equivalent to

minimizing

h2(vk) = γk(ryk − evk/2)2 + vk +
Bks
2

(vk − µks)2 (3.40)

where ryk = |Yk|. And h2 can be minimized using Newton’s method. The first and second

order derivatives are given by

h′2(vk) = −γk(ryk − evk/2)evk/2 + 1 +Bks(vk − µks) (3.41)
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h′′2(vk) = −1
2
γk(ryk − evk/2)evk/2 +

1
2
γke

vk +Bks (3.42)

The Newton’s method updates the log-amplitude vks as

v̂ks ← v̂ks − η
h′2(v̂ks)

|h′′2(v̂ks)|+ τ
(3.43)

where η is the learning rate and τ is the regularization to avoid divergence when h′′2 is close

to zero. This avoids the numerical instability caused by the exponential term in Eq(3.40).

In the experiment, we use the noisy signal log-spectra for initialization, v̂ks =

log(|Yk|2). We set η = 0.5, τ = 3 and run 10 Newton’s iterations.

We use the same strategy as described in section 3.2.2 to compute p(s|Y ) using

Eq(3.38). The signal estimator follows

v̄k =
∑
s

v̂ksp(s|Y ) (3.44)

Xk = exp(v̄k/2)ei∠Yk (3.45)

The MAP estimator of phase from the noisy signal is used.

In contrast to Eq(3.39) where the amplitude estimators are averaged, Eq(3.44)

provides the log-amplitude estimator. The magnitude is obtained by taking the exponential.

The exponential function is convex, thus Eq(3.44) provides a smaller magnitude estimation

than Eq(3.39) when ev̂ks/2 = r̂ks. Furthermore, this log-spectral estimator fits a speech

recognizer, which extracts the Mel Frequency Cepstral Coefficients (MFCC).
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3.3 Learning Gain and Noise with Gaussian Approximation

One drawback of the system comes from the assumption that the statistical prop-

erties of the training set match those of the testing set, which means a lack of adaptability.

However, the energy of the test signals may not be reliably estimated from a training set

because of uncontrolled factors such as variations of the speech loudness or the distance

between the speaker and microphone. This mismatch results in poor enhancement because

the pre-trained model may not capture the statistics of samples under the testing condi-

tions. One strategy to compensate for these variations is to estimate the gain H instead of a

fixed value of 1 used in the previous sections. Two conditions will be considered: frequency

independent gain, which is a scalar gain and frequency dependent gain. Gain-adaptation

needs to carry out efficiently. For the signal prior given in Eq(3.2), it is difficult to estimate

the gain because of the involvement of log-normal distributions. See section 3.1.1. But

under Gaussian approximation, the gain can be estimated using the EM algorithm.

Recall that the acoustic model is Yk = HkXk + Nk as given in Eq(3.1). If p(Xk)

has the form of GMM and p(Nk) is Gaussian, the model becomes exactly a mixture of factor

analysis (MFA) model. The gainH can be estimated in the same way as estimating a loading

matrix for MFA. For this purpose, we take the approach in section 3.2.1 and approximate

the log-normal PDF p(Xk|s) by a normal distribution q(Xk|s) = N (Xk|0, 1/λks), where

the signal covariance λks is given in Eq(3.10). In addition, we assume additive Gaussian

noise as provided in Eq(3.5). Treating Xk as a hidden variable, we derive an EM algorithm,

which contains an expectation step (E-step) and a maximization step (M-step), to estimate

the gain Hk and the noise spectrum Γ = diag(γ1, · · · , γK).
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Figure 3.2: Block diagram of EM algorithm for the gain and noise spectrum estimation. The E-step,
computing p(X, s|Y,H), and M-step, updating H and Γ, iterate until convergence.

3.3.1 EM Algorithm for Gain and Noise Spectrum Estimation

The data log-likelihood denoted by L is

L =
∑
t

log p(Yt) =
∑
t

log

(∑
st

∫
p(Yt, Xt, st)dXt

)

≥
∑
tst

∫
q̃(Xt, st)[log p(Yt, Xt, st)− log q̃(Xt, st)]dXt

where t is the frame index. The above inequality is true for all choices of the distribution

q̃(Xt, st). When q̃(Xt, st) equals the posterior probability p(Xt, st|Yt), the inequality be-

comes an equality. The EM algorithm is a typical technique to maximize the likelihood. It

iterates between updating the auxiliary distribution q̃(Xt, st) (E-step) and optimizing the

model parameters {H,Γ} (M-step), until some convergence criterion is satisfied.



35

The E-step computes the posterior distribution over Xt, q̃(Xt|st) = p(Xt|Yt, st) =∏
k p(Xkt|Ykt, st) with gain H fixed. And p(Xkt|Ykt, st) is computed as

p(Xkt|Ykt, st) =
p(Ykt|Xkt)q(Xkt|st)

p(Ykt|st)
(3.46)

Note we use the approximated signal prior q(Xkt|st) given in Eq(3.11). Thus, the com-

putation is a standard Bayesian inference in a Gaussian system, and one can show that

p(Xkt|Ykt, st) = N (Xkt|X̃kst,Σks), whose mean X̃kst and precision Σks are given by

Σks = H2
kγk + 1/λks (3.47)

X̃kst =
γkH

∗
kYkt

Σks
(3.48)

Here H∗ denotes the complex conjugate of H. We point out that the precisions are time-

independent while the means are time dependent.

The posterior state probability q̃(st) = p(st|Yt) is computed as

q̃(st) = p(st|Yt) =
p(Yt|st)p(st)

p(Yt)
,

∝
∏
k

N (Ykt|0,
1

H2
kλks + 1/γk

)p(st) (3.49)

The M-step updates the gain H and noise spectrum Γ = diag(γ1, · · · , γK) with q̃

fixed. Now we consider two conditions: frequency dependent gain and frequency indepen-

dent gain.
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Frequency Independent Gain: H is scalar, its update rule is

H =

∑
t,st,k

q̃(st)γkYktX̃∗kstt∑
t,st,k

q̃(st)γk(X̃ksttX̃
∗
kstt

+ Σ−1
ks )

(3.50)

Frequency Dependent Gain: H = {H1, · · · , HK} is a vector. The update rule

is, for k = {1, · · · ,K},

Hk =

∑
t,st

q̃(st)YktX̃∗kstt∑
t,st

q̃(st)(X̃ksttX̃
∗
kstt

+ Σ−1
ks )

(3.51)

The update rule for the precision of noise γk is

1/γk =
1
T

∑
t,st

∫
q̃(Xkt, st|Yt)|Ykt −HkXkt|2dXkt. (3.52)

The goal of the EM algorithm is to provide an estimation for the gain and the noise

spectrum. Note that it is not necessary to compute the intermediate results X̃kstt in every

iteration. Thus substantial computation can be saved if we substitute Eq(3.48) into the

learning rules. This significantly improves the computational efficiency and saves memory.

After some mathematical manipulation, the EM algorithm for the frequency dependent gain

is as follows:

1. Initialize Hk and γk;

2. Compute q̃(st) using Eq(3.49);

3. Update the precisions Σks using Eq(3.47);
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4. Update the gain

Hk ←
∑

tst
q̃(st)Σ−1

ks Hkγk|Ykt|2∑
tst
q̃(st)((Σ−1

ks γk)
2H2

k |Ykt|2 + Σ−1
ks )

(3.53)

5. Update the noise precision

1
γk
← 1

T

∑
tst

q̃(st)((1− Σ−1
ks γkH

2
k)|Ykt|2 + Σ−1

ks H
2
k) (3.54)

6. Iterate step 2), 3), 4), 5) until convergence.

For frequency independent gain, the gain is updated as follows

H ←
∑

tstk
q̃(st)Σ−1

ks Hkγ
2
k |Ykt|2∑

tstk
q̃(st)γk((Σ−1

ks γk)
2H2

k |Ykt|2 + Σ−1
ks )

(3.55)

The block diagram is shown in Figure 3.2. In the above EM algorithm, Σks is time

independent, thus it is computed only once for all the frames. And |Ykt|2 is computed in

advance.

In our experiment, because the test files are 1-2 seconds long segments, the param-

eters can not be reliably learned using a single segment. Thus we concatenate 4 segments

as a testing file. The gain is initialized to be 1. The noise covariance is initialized to be

30% of the signal covariance for all signal to noise ratio (SNR) conditions, which does not

include any prior SNR knowledge. Because the EM algorithm for estimating the gain and

noise is efficient, we set strict convergence criteria: a minimum of 100 EM iterations, the

change of likelihood less than 1 and the change of gain less than 10−4 per iteration.
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3.3.2 Identifiability of Model Parameters

The MFA is not identifiable because it is invariant under the proper re-scaling of

the parameters. However, in our case, the parameters H and Γ are identifiable, because

the model for speech, a GMM trained by clean speech signals, remains fixed during the

learning of parameters. The fixed speech prior removes the scaling uncertainty of the gain

H. Second, the speech model is a GMM while the noise is modeled by a single Gaussian.

The structure of speech, captured by the GMM through its higher order statistics, doesn’t

resemble a single Gaussian. This makes the noise spectrum Γ identifiable. As shown in

our experiments, the gain H and noise spectrum Γ are reliably estimated using the EM

algorithm.

Acknowledgement: This chapter contains materials in J. Hao, H. Attias, S. Na-

garajan, T.-W. Lee and T. Sejnowski, “Speech Enhancement, Gain, and Noise Spectrum

Adaptation Using Approximate Bayesian Inference”, IEEE Transactions on Audio, Speech,

and Language Processing, accepted for publication.
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Speech Enhancement using

Gaussian Scale Mixture Models

The GMM in log-spectral domain is a accurate model for speech log-spectra. How-

ever, when we convert the GMM into the frequency domain, it results in mixture of log-

normals for FFT coefficients. The mixture of log-normal density is inappropriate for speech

because it has low density around 0, in contrast the FFT coefficients of speech has a sharp

peak around 0. The reason is that, the argument of the logarithm function can not be zero,

and magnitudes of the FFT coefficients can not be zero. In this chapter, we propose an

stochastic relationship between the log-spectra and FFT coefficients. The speech model is a

Gaussian scale mixture model (GSMM), which matches the statistical properties of speech

signal in frequency domain. We develop and EM algorithm to train the GSMM, and two

methods for signal estimation: Laplace method and variational approximation.

39
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4.1 Gaussian Scale Mixture Model

4.1.1 Acoustic Model

Assuming additive noise, the time domain acoustic model is

y[t] = h[t] ∗ x[t] + n[t] =
∑
m

hmx[t−m] + n[t] (4.1)

where h is the impulse response of the filter and ∗ denotes the convolution. Applying a fast

Fourier transform (FFT), this becomes

Yk = HkXk +Nk, (4.2)

where k is the frequency bin and Hk is the gain. We assume Hk = 1 in this chapter.

The noise is modeled by a Gaussian

p(Yk|Xk) = N (Yk|Xk, γk) =
γk
π
e−γk|Yk−Xk|

2
(4.3)

with zero mean and precision 1/γk = E{|Yk − Xk|2}. Note this Gaussian is of a complex

variable, because the FFT coefficients are complex.

4.1.2 Improperness of the Log-Normal Distribution for Xk

If the log-spectra xk = log(|Xk|2) are modeled by a GMM, for each mixture s,

p(xk|s) =
√
νks
2π

e−
νks
2

(xk−µks)2
(4.4)
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Figure 4.1: Distributions for the real part of Xk, with its imaginary part fixed at 0. The log-normal
(dotted) has two modes. The GSMM (solid) is more peaky than Gaussian (dashed).

is a Gaussian with mean µks and precision νks. Express Xk = X ′k + iX ′′k by its real and

imaginary parts. Then X ′k = exk/2 cos θk and X ′′k = exk/2 sin θk, where θk is the phase. If

the phase is uniformly distributed, p(θk) = 1
2π , the PDF for Xk is p(Xk|s) = p(X ′k, X

′′
k |s) =

1
Jk
p(xk|s)p(θk), where Jk is the Jacobian Jk = ∂(X′k,X

′′
k )

∂(xk,θk) = |Xk|2/2. We have

p(Xk|s) =
1

π|Xk|2
√
νks
2π

e−
νks
2

(log(|Xk|2)−µks)2
(4.5)

as plotted in Figure 4.1. This is a log-normal PDF because log(|Xk|2) is normally dis-

tributed. Note that it has a saddle shape around zero. In contrast to this log-normal

density, the FFT coefficients Xk of speech is super-Gaussian and has a peak at zero, which

can not be modeled by the log-normal density.
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4.1.3 Gaussian Scale Mixture Model for Speech Prior

Instead of assuming xk = log(|Xk|2), we model this relation stochastically. To

avoid confusion, we denote the random variable for the log-spectra as ξk. The conditional

probability is

p(Xk|ξk) =
e−ξk

π
e−e

−ξk |Xk|2 (4.6)

This is a Gaussian PDF with mean zero and precision e−ξk . Note that ξk controls the

scaling of Xk. Consider log p(Xk|ξk) = −ξk − e−ξk |X|2 − log π, and its maximum given by

ξ̂k = arg max
ξk

p(Xk|ξk) = log |Xk|2 (4.7)

Thus we term ξk the log-spectrum.

It has been proposed in [19, 20, 18] to model the log-spectra with a GMM

p(ξk|s) = N (ξk|µks, νks) =
√
νks
2π

e−
νks
2

(ξk−µks)2
(4.8)

p(ξ1, · · · , ξK) =
∑
s

p(s)
∏
k

p(ξk|s) (4.9)

where s is the state indexing the mixtures. Though the precision is diagonal for each s,

p(ξ1, · · · , ξK) doesn’t factorize over k, i.e. the frequency bins are dependent. The PDF for

Xk is

p(X1, · · · , Xk) =
∑
s

p(s)
∏
k

∫
dξkp(Xk|ξk)p(ξk|s) (4.10)

This is called Gaussian scale mixture model (GSMM) because ξk controls the scaling of Xk

and the scaling parameter ξk obeys a GMM given in Eq(4.9). Note that {X1, · · · , XK} are

statistically dependent because of the dependency among {ξ1, · · · , ξK}.
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The GSMM has a peak at zero, in contrast to the log-normal PDF which has low

probability near zero. To prove it, observe p(Xk = 0|ξk) > p(Xk = X̄k|ξk), for any X̄k 6= 0,

then

p(Xk = 0) =
∑
s

∫
dξkp(Xk = 0|ξk)p(ξk|s)p(s)

>
∑
s

∫
dξkp(Xk = X̄k|ξk)p(ξk|s)p(s)

= p(Xk = X̄k) (4.11)

The GSMM is super-Gaussian, defined to have positive kurtosis, for each mixture.

To show this property, we express Xk = X ′k + iX ′′k by the real and imaginary parts. The

Kurtosis of X ′k conditioned on state s is defined by

Kurt(X ′k|s) = E{(X ′k)4|s} − 3[E{(X ′k)2|s}]2 (4.12)

where E stands for the expectation. We need

E{(X ′k)4|s} =
∫

(X ′k)
4 e
−ξk

π
e−e

−ξk ((X′k)2+(X′′k )2)

×
√
νks
2π

e−
νks
2

(ξk−µks)2
dX ′kdX

′′
kdξk

=
∫

3
4
e2ξk

√
νks
2π

e−
νks
2

(ξk−µks)2
dξk

=
3
4
e2µks+2/νks (4.13)
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E{(X ′k)2|s} =
∫

(X ′k)
2 e
−ξk

π
e−e

−ξk ((X′k)2+(X′′k )2)

×
√
νks
2π

e−
νks
2

(ξk−µks)2
dX ′kdX

′′
kdξk

=
∫

1
2
eξk
√
νks
2π

e−
νks
2

(ξk−µks)2
dξk

=
1
2
eµks+1/(2νks) (4.14)

Because the precision νks > 0,

Kurt(X ′k|s) =
3
4
e2µks+1/νks(e1/νks − 1) > 0 (4.15)

The real and imaginary parts are symmetric due to uniform phase, Kurt(X ′′k |s) = Kurt(X ′k|s).

A Gaussian PDF has zero kurtosis. A super-Gaussian PDF is more peaky and has heavier

tails than Gaussian, as shown in Figure 4.1. The GSMM, which is unimodal and super

Gaussian, is a proper model for the FFT coefficients of speech [24]. The mixture model

offers extra flexibility.

4.2 An EM Algorithm for Training the GSMM

The parameters of the GSMM are θ = {µks, νks, p(s)} which can be estimated

from the training samples. We estimate the parameters by the maximum likelihood (ML)
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using EM algorithm. The log-likelihood is

L(θ) =
∑
t

log p(X1t, · · · , Xkt)

=
∑
t

log

(∑
st

p(st)
∏
k

∫
p(Xkt|ξkt)p(ξkt|st)dξkt

)

≥
∑
tst

∫
q(st)

∏
k

q(ξkt|st)

× log
p(st)

∏
k p(Xkt|ξkt)p(ξkt|st)

q(st)
∏
k q(ξkt|st)

dξ1t · · · dξKt

= F(q, θ). (4.16)

The inequality holds for any choice of distribution q due to Jensen’s inequality [23]. The

EM algorithm iteratively optimizes F(q, θ) over q and θ, while optimizing L with respect

to θ directly is more difficult. When q equals the posterior distribution q(ξ1t, · · · , ξKt, st) =

p(ξ1t, · · · , ξKt, st|X1t, · · · , Xkt), the lower bound is tight, F(q, θ) = L(θ).

4.2.1 The Expectation Step

The E-step updates the distribution q. The optimal q(ξkt|st) that maximizes F

satisfies

log q(ξkt|st) = log p(Xkt|ξkt) + log p(ξkt|st) + c

= −ξkt − e−ξkt |Xkt|2 −
νks
2

(ξkt − µks)2 + c (4.17)
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where c is a constant. There is no closed-form density, so we compute a Gaussian approxi-

mation by expanding log q to the second order around the mode ξ̂ktst . We have

q(ξkt|st) = N (ξkt|ξ̄ktst , φktst) (4.18)

ξ̄ktst = ξ̂ktst +
1

φktst
(e−ξ̂ktst |Xkt|2

−νkst ξ̂ktst + νkstµkst − 1) (4.19)

φktst = e−ξ̂ktst |Xkt|2 + νkst . (4.20)

The accuracy of the Gaussian approximation depends on the point ξ̂ktst where we expand

log q(ξkt|st). We choose the mode of the posterior. Substituting ξ̂ktst = ξ̄ktst into Eq(4.19)

yields an iterative update,

ξ̄ktst ← ξ̄ktst +
1

φktst
(e−ξ̄ktst |Xkt|2 − νkst ξ̄ktst + νkstµkst − 1) (4.21)

This update rule is equivalent to maximizing log q(ξkt|st) in Eq(4.17) using the the

Newton’s method,

ξ̄ktst ← ξ̄ktst −
[log q(ξkt|st)]′ξkt=ξ̄ktst
[log q(ξkt|st)]′′ξkt=ξ̄ktst

(4.22)

The second-order approximation to log q(ξkt|st) from Newton’s method results in a Gaussian

PDF.

The posterior state probability q(st) is computed by maximizing F(q, θ) with re-
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spect to q(st). We define

fktst =
∫
q(ξkt|st)(log p(Xkt, ξkt|st)− log q(ξkt|st))

= log
√
νkst

π
√
φktst

− e−ξ̄ktst+1/(2φktst )|Xkt|2 − ξ̄ktst

−νkst
2

(
1

φktst
+ (ξ̄ktst − µkst)2) +

1
2

(4.23)

And q(st) can be obtained as

q(st) =
exp(

∑
k fktst)p(st)
Zt

(4.24)

Zt =
∑
st

exp(
∑
k

fktst)p(st) (4.25)

4.2.2 The Maximization Step

The M-step optimizes F(q, θ) over model parameters θ.

µks =
∑

t q(st = s)ξktst∑
t q(st = s)

(4.26)

1
νks

=
∑

t q(st = s)[(ξ̄ktst − µks)2 + 1/(φktst)]∑
t q(st = s)

(4.27)

p(s) =
∑

t q(st = s)∑
ts q(st = s)

(4.28)

The cost F is computed as F =
∑

t log(Zt) which can be used empirically to mon-

itor the convergence, because the F is not guaranteed to increase due to the approximation

in the E-step.

The parameters of a GMM trained in the log-spectral domain are used to initialize

the EM algorithm. The E-step and M-step are iterated until convergence, which is very

quick because ξk simulates the log-spectra.
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4.3 Two Signal Estimation Approaches

The task of speech enhancement is to recover the signal from noisy recordings based

on the model assumption. For the probabilistic models, signal is usually estimated from the

its posterior PDF given the observed samples. For example, the MMSE estimator computes

the posterior mean. However, for sophisticated models, the closed-form solutions for the

posterior PDF and MMSE estimator are difficult to obtain. To enhance the tractability, we

use the Laplace method [21] and a variational approximation [2].

Each frame is independent and processed sequentially. The frame index t is omitted

for simplicity. We rewrite the full model as

∏
k

p(Yk|Xk)p(Xk|ξk)p(ξk|s)p(s) (4.29)

where p(Yk|Xk) is given by Eq.(4.3), p(Xk|ξk) is given by Eq.(4.6), p(ξk|s) is a GMM given

in Eq.(4.9) and p(s) is the state probability.

4.3.1 Laplace Method for Signal Estimation

The Laplace method computes the maximum a posterior (MAP) estimator for

each state s. Conditioned on the state s, the logarithm of the posterior distribution over

Xk and ξk is

log p(Xk, ξk|Yk, s) = log p(Yk|Xk) + log p(Xk|ξk) + log p(ξk|s) + c

= −γk|Yk −Xk|2 − ξk − e−ξk |Xk|2 −
νks
2

(ξk − µks)2 + c

= hs(Xk, ξk) (4.30)
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For fixed ξk, the MAP estimator for Xk is

Xk =
γkYk

γk + e−ξk
(4.31)

For fixed Xk, the optimization over ξk can be performed using Newton’s method. We need

∂hs(Xk, ξk)
∂ξk

= −1 + e−ξk |Xk|2 − νks(ξk − µks) (4.32)

∂2hs(Xk, ξk)
∂ξ2

k

= −e−ξk |Xk|2 − νks (4.33)

Substituting Xk by Eq(4.31), we obtain the update rule for ξks

ξks ← ξks −
∂hs(Xk, ξk)/∂ξk|ξk=ξks

∂2hs(Xk, ξk)/∂ξ2
k|ξk=ξks

(4.34)

This update rule is initialized by both ξks = µks, the means of GSMM and ξks = log |Yk|2,

the noisy log-spectra. After iterating to convergence, the ξks that gives higher value of

hs(Xk, ξk) is selected. Note that because hs(Xk, ξk) is a concave function in ξk,
∂2hs(Xk,ξk)

∂ξ2
k

<

0, Newton’s method works efficiently.

Denote the convergent value for ξks from Eq(4.34) as ξ̄ks and compute X̄ks =

γkYk

γk+e−ξ̃ks
using Eq(4.31). We obtain the MAP estimators

(X̄ks, ξ̄ks) = arg max
Xk,ξk

log p(Xk, ξk|Yk, s) (4.35)

Because the true state s is unknown, the estimators are averaged over all states.
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The posterior state probability is

p(s|Y1, · · · , YK) ∝ p(s)
∏
k

∫
p(Yk|Xk)p(Xk|s)dXk (4.36)

p(Xk|s) =
∫
p(Xk|ξk)p(ξk|s)dξk (4.37)

The above integral is intractable. Approximate the p(Xk|s) by a Gaussian with the same

first and second order momenta. The mean is zero and the variance is

βks =
∫
|Xk|2p(Xk|s)dXk = eµks+1/(2νks) (4.38)

Using the approximate PDF p(Xk|s) ≈ N (Xk|0, 1/βks), the Gaussian integral in Eq(4.36)

becomes p(Yk|s) ≈ N (Yk|0, 1
1/γk+eµks+1/(2νks) ) and

p(s|Y1, · · · , YK) ∝ p(s)
∏
k

N (Yk|0,
1

1/γk + eµks+1/(2νks)
) (4.39)

The estimated signal can be constructed from the average of either X̄ks or ξ̄ks,

weighted by the posterior state probability,

X̂k =
∑
s

X̄ksp(s|Y1, · · · , YK) (4.40)

ξ̂k =
∑
s

ξ̄ksp(s|Y1, · · · , YK) (4.41)

X̂ ls
k = eξ̂k/2ei∠Yk (4.42)

where the phase of the noisy signal ∠Yk is used. The time domain signal is synthesized by

applying IFFT.
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4.3.2 Variational Approximation for Signal Estimation

Variational approximation employs a factorized posterior PDF. Here, we assume

the posterior PDF over Xk and ξk conditioned on state s factorizes

p(Xk, ξk, |Yk, s) ≈ q(Xk|s)q(ξk|s) (4.43)

The difference between q and the true posterior is measured by the KL-divergence [23], D,

defined as

D(q||p) = −Eq
{

log
p(s|Y1, · · · , YK)

∏
k p(Xk, ξk|Yk, s)

q(s)
∏
k q(Xk|s)q(ξk|s)

}
(4.44)

where Eq is the expectation over q. Choose the optimal q that is closest to the true posterior

in the sense of the KL-divergence, q = arg minqD(q||p).

The optimal q(Xk|s) that minimizes D(q||p) is

log q(Xk|s) ∝ log p(Yk|Xk) +
∫
dξkq(ξk|s) log p(Xk|ξk)

∝ −γk|Yk −Xk|2 −
∫
e−ξkq(ξk|s)dξk|Xk|2 (4.45)

As shown later in Eq(4.50), we can use q(ξk|s) = N (ξk|ξ̄ks, ψks). Because the above equation

is quadratic in Xk, q(Xk|s) is Gaussian

q(Xk|s) = N (Xk|X̄ks, ϕks) (4.46)

X̄ks =
γk
ϕks

Yk (4.47)

ϕks = γk + e−ξ̄ks+1/(2ψks) (4.48)
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The optimal q(ξk|s) that minimizes D(q||p) is

log q(ξk|s) ∝
∫
dXkq(Xk|s) log p(Xk|ξk) + log p(ξk|s)

∝ −ξk − e−ξk
∫
|Xk|2q(Xk|s)dXk −

νks
2

(ξk − µks)2 (4.49)

Because this PDF is hard to work with, a Gaussian approximation is made by expanding

log q(ξk|s) around its mode ρks up to the second order. We have

q(ξk|s) = N (ξk|ξ̄ks, ψks) (4.50)

ξ̄ks = ρks +
1
ψks

(
e−ρks(|X̄ks|2 +

1
ϕks

)

−νks(ρks − µks)− 1
)

(4.51)

ψks = e−ρks(|X̄ks|2 +
1
ϕks

) + νks (4.52)

Because we chose ρks to be the posterior mode, ρks = ξ̄ks. Substituting this into Eq(4.51)

and Eq(4.52), we obtain the update equations

ξ̄ks ← ξ̄ks +
1
ψks

(
e−ξ̄ks(|X̄ks|2 +

1
ϕks

)

−νks(ξ̄ks − µks)− 1
)

(4.53)

ψks ← e−ξ̄ks(|X̄ks|2 +
1
ϕks

) + νks (4.54)

This is equivalent to maximizing the log q(ξk|s) of Eq(4.49) using Newton’s method. The

ψks > 0 indicates log q(ξk|s) is a concave function in ξk, thus Newton’s method is efficient.

Expanding log q(ξk|s) to the second order results in the Gaussian PDF.

The variational algorithm is initialized with ξks = log(|Yk|2) and ϕks = γk +
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exp(−ξks). Note that X̄ks in Eq(4.47) can be substituted into Eq(4.53) and Eq(4.54) to avoid

redundant computation. Then the updates over ψks, ξks and ϕks iterate until convergence.

To compute q(s) that minimizes D(q||p), define

gks =
∫
q(Xk|s)q(ξk|s) log

p(Yk|Xk)p(Xk|ξk)p(ξk|s)
q(Xk|s)q(ξk|s)

= log
γk
√
νks

πϕks
√
ψks
− γk|Yk|2 + ϕks|X̄ks|2 − ξ̄ks

−νks
2

[
(ξ̄ks − µks)2 +

1
ψks

]
+

1
2

(4.55)

The posterior state probability is

q(s) =
exp(

∑
k gks)p(s)
Z

(4.56)

Z =
∑
s

exp(
∑
k

gks)p(s) (4.57)

The function log(Z) = log p(Y1, · · · , YK) − D(q||p) increases when D(q||p) de-

creases. Because we use a Gaussian for q(ξk|s), log(Z) is not theoretically guaranteed to

increase, but it is used empirically to monitor the convergence.

Because the hidden state s is unknown, the estimator for each state is averaged

with weights q(s). Similar to the Laplace method, we can construct the signal in two ways

X̂k =
∑
s

X̄ksq(s) (4.58)

ξ̂k =
∑
s

ξ̄ksq(s) (4.59)

X̂ ls
k = eξ̂k/2ei∠Yk (4.60)

where ∠Yk is the phase of the noisy signal. Time domain signal is synthesized by IFFT.
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5

Experimental Results for Speech

Enhancement

We evaluate the performances of the proposed algorithms by applying them to

enhance the speeches corrupted by various levels of SSN. The signal to noise ratio (SNR) and

word recognition error rate serve as the criteria to compare them with the other benchmark

algorithms quantitatively.

5.1 Task and Dataset Description

For all the experiments, we use the materials provided by the speech separation

challenge [25]. This data set contains six-word sentences from 34 speakers. The speech

follows the sentence grammar, 〈$command〉 〈$color〉 〈$preposition〉 〈$letter〉 〈$number〉

〈$adverb〉. There are 25 choices for the letter (a-z except w), 10 choices for the num-

ber (0-9 ), 4 choices for the command (bin, lay, place, set), 4 choices for the color (blue,

green, red, white), 4 choices for the preposition (at, by, in, with) and 4 choices for the ad-

55
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Figure 5.1: Plot of SSN spectrum (dotted line) and speech spectrum (solid line) averaged over one
segment under 0dB SNR. Note the similar shapes.

verb (again, now, please, soon). The time domain signals are sampled at 25kHz. Provided

with the training samples, the task is to recover speech signals and recognize the key words

(color, letter, digit) in the presence of different levels of SSN. Figure 5.1 shows the speech

and the SSN spectrum averaged over a segment under 0dB SNR. The average spectra of

the speech and the noise have the similar shape, hence the name speech shaped noise. The

testing set includes the noisy signals under 4 SNR conditions, −12dB, −6dB, 0dB, and 6dB,

each consisting of 600 utterances from 34 speakers.
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5.2 Training the Log-Spectral Domain GMM

The training set consists of clean signal segments that are 1−2 seconds long. They

are used to train our prior speech model. To obtain a reliable speech model, we randomly

concatenate 2 minutes of signals from the training set and analyze them using Hanning win-

dows, each of size 800 samples and overlapping by half of the window. Frequency coefficients

are obtained by performing a 1024 points FFT to the time domain signals. Coefficients in

the log-spectral domain are obtained by taking the logarithm of the magnitude of the FFT

coefficients. Due to FFT/IFFT symmetry, only the first 513 frequency components are

kept. Cepstral coefficients are obtained by applying IFFT on the log-spectral amplitudes.

The speech model for each speaker is a GMM with 30 states in the log-spectral

domain. First, we take the first 40 cepstral coefficients and apply a k-mean algorithm to

obtain k = 30 clusters. Next, the outputs of the k-mean clustering are used to initialize

the GMM on those 40 cepstral coefficients. Then, we convert the GMM from the cepstral

domain into the log-spectral domain using FFT. Finally, the EM algorithm initialized by

the converted GMM is used to train the GMM in the log-spectral domain. After training,

this log-spectral domain GMM with 30 states for speech is fixed when processing the noisy

signals.

5.3 Training the Gaussian Scale Mixture Model

The GSMM with 30 states for each speaker was trained using 2 minutes of signal

concatenated from the training set. We first applied a Hanning window of size 800 samples

with half overlapping, then a 1024-point FFT to extract the frequency components. The

log-spectral coefficients were obtained by taking the log magnitude of the FFT coefficients.
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Due to the symmetry of FFT, only first 513 components were kept.

We applied the k-mean algorithm to partition the log-spectra into k = 30 clusters.

They were used to initialize the GMM which was further trained by standard EM algorithm.

Initialized by the GMM, we ran the derived EM algorithm in section 4.2 to train the GSMM.

After training, the speech model was fixed and served as signal prior. It was not updated

when processing the noisy signals.

5.4 Benchmark Algorithms for Comparison

In this section, we present the benchmark algorithms with which we compare the

proposed algorithms: the Wiener filter, the perceptual model [12], the linear approximation

[19, 20], and the model based on super Gaussian prior [24]. We assume that parameters of

the model for noise are available, and they are estimated by concatenating 50 segments in

the experiment.

5.4.1 Wiener Filter (Wiener)

Time varying Wiener filter assumes that both of the signal and noise power are

known, and they are stationary for a short period of time. In the experiment, we first

divide the signals into frames of 800 samples long with half overlapping. Both speech and

noise are assumed to be stationary within each frame. To estimate speech and noise power,

for each frame, the 200-sample long sub-frames are chosen with half overlapping. On the

sub-frames, Hanning windows are applied. Then, 256 points FFT are performed on those

sub-frames to obtain the frequency coefficients. The power of signal within each frame t for

frequency bin k, denoted by P xtk, is computed by averaging the power of FFT coefficients
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over all the sub-frames that belong to the frame t. The same method is used to compute

the noise power denoted by Pntk. The signal estimation is computed as

Xtjk =
P xtk

P xtk + Pntk
Ytjk (5.1)

where j is the sub-frame index and k denotes the frequency bins. After IFFT, in the time

domain, each frame can be synthesized by overlap-adding the sub-frames, and the estimated

speech signal is obtained by overlap-adding the frames.

Because the signal and noise powers are derived locally for each frame from the

speech and noise, the Wiener filter contains strong speech prior in detail. Its performance

can be regarded as a sort of experimental upper bound for the proposed methods.

5.4.2 Perceptual Model (Wolfe)

Perceptually motivated noise reduction technique can be seen as a masking process.

The original signal is estimated by applying some suppression rules. For comparison, we use

the method described in [12]. The algorithm estimates the spectral amplitude by minimizing

the following cost function

C(âk, ak) =


(âk − ak − mk

2 )2 − (mk2 )2 if |âk − ak − mk
2 | >

mk
2 ;

0 otherwise.
(5.2)

where âk is the estimated spectral amplitude and ak is the true spectral amplitude. This cost

function penalizes the positive and negative errors differently, because positive estimation

errors are perceived as additive noise and negative errors are perceived as signal attenua-

tion [12]. The stochastic property of speech is that real spectral amplitude is unavailable,
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therefore âk is computed by minimizing the expected cost function

âk = arg min
âk

∫ ∫
C(âk, ak)p(αk, ak|Yk)dαkdak (5.3)

where αk is the phase and p(αk, ak|Yk) is the posterior signal distribution. Details of the

algorithm can be found in [12]. The MATLAB code is available online [26]. The original

code adds synthetic white noise to the clean signal, we modified it to add SSN to corrupt

a speech at different SNR levels.

The reason we chose this method is because we hypothesize that this spectral

analysis based approach fails to enhance the SSN corrupted speech, due to the spectral

similarity between the speech and noise as shown in Figure 5.1. This method, motivated

from a different aspect by human perception, also serves as a benchmark with which we can

compare our methods.

5.4.3 Linear Approximation (Linear)

It can be shown that the relationship among the log-spectra of the signal x, the

noisy signal y and the noise n is given by [19, 20]

yk = xk + log(1 + exp(nk − xk)) + εk, (5.4)

where εk is an error term.

The speech model remains the same which is GMM given by Eq(3.2). But the

noise log-spectrum n has a Gaussian density with the mean ρ and precision D, while the
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error term ε obeys a Gaussian with zero-mean and precision R,

p(n) = N (n|ρ,D) =
∏
k

N (nk|ρk, Dk) (5.5)

p(ε) = N (ε|0, R) =
∏
k

N (εk|0, Rk) (5.6)

This essentially assumes a log-normal PDF for the noise FFT coefficients, in contrast to the

noise model in Eq(3.5).

Linear approximation to Eq(5.4) has been proposed in [19, 20] to enhance the

tractability. Note that there are two hidden variables x and n due to the error term

ε. Let zk = (xk, nk)T . Define g(zk) = xk + log(1 + exp(nk − xk)) and its derivatives

g′x(zk) = ∂g
∂xk

= 1
1+exp(nk−xk) , g′n(zk) = ∂g

∂nk
= 1

1+exp(xk−nk) , g′(zk) = (g′x(zk), g′n(zk))T . Use

Eq(5.4) and expand g(zk) around z̃ks = (x̃ks, ñks)T linearly, yk becomes a linear function of

zk,

yk ≈ l(zk) + εk (5.7)

where

l(zk) = g(z̃ks) + g′(z̃ks)T (zk − z̃ks) (5.8)

The choice for z̃ks will be discussed later. Now we have a linear Gaussian system and the

posterior distribution over zk is Gaussian, N (zk|ẑks,Λ). The mean ẑks and the precision Λ

satisfy

Λ(zk − ẑks) = −Rk(yk − l(zk))g′(z̃ks)−Gks(ζks − zk) (5.9)

Λ = g′(z̃ks)Rkg′(z̃ks)T +Gks (5.10)
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where ζks = (µks, ρk)T , the means of GMM for the speech and noise log-spectrum, and

Gks = diag(Bks, Dk), the precisions.

The accuracy of linear approximation strongly depends on the point z̃ks which is

the point of expansion for g(zk). A reasonable choice is the MAP. Substitute zk = z̃ks in

Eq(5.9) and use z̃ks = ẑks, we can obtain an iterative update for z̃ks:

z̃ks ← z̃ks + ηΛ−1{Rk(yk − g(z̃ks))g′(z̃ks) +Gks(ζks − z̃ks)} (5.11)

The η is the learning rate, and is introduced to avoid oscillation. This iterative update gives

the signal log-spectral estimator, x̃ks, which is the first element of the z̃ks.

The state probability p(s|y) is computed as, per Bayes’ rule, p(s|y) ∝ p(y|s)p(s).

The state dependent probability is

p(y|s) =
∏
k

√
|Γks

2π
| exp(−Γks

2
(yk − l(ζks))2), (5.12)

where the mean l(ζks) is given in Eq(5.8) and the precision Γks = 1
g′TG−1g′+1/Rk

.

The log-spectral estimator is x̄k =
∑

s x̃ksp(s|y). Using the phase of the noisy

signal ∠Yk, the signal estimation in frequency domain is given by Xk = exp(x̄/2)ei∠Yk .

It is observed that Newton’s method with learning rate 1 oscillates, therefore we

set η = 0.5 in our experiments. We initialize the iteration of Eq(5.11) with two conditions,

(yk, ρk)T and (µks, ρk)T , and choose the one that offers higher likelihood value. The number

of iterations is 7 which is enough for convergence. Note that the optimization of the two

variables x and n increases computational cost.
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5.4.4 Super Gaussian Prior (SuperGauss)

This method is developed in [24]. Let XR = Re{X} and XI = Im{X} denote the

real and the imaginary part of the signal FFT coefficients. The super Gaussian priors for

XR and XI obey double-sided exponential distribution, given by

p(XR) =
1
σx
e−

2|XR|
σx (5.13)

p(XI) =
1
σx
e−

2|XI |
σx (5.14)

Assume the Gaussian density for the noise N , p(N) = N (0, 1/σ2
n). Here, σ2

x and σ2
n are the

means of |X|2 and |N |2, respectively. Let ξ = σ2
x/σ

2
n be the a priori SNR, YR = Re{Y }

be the real part of the noisy signal FFT coefficient. Define LR+ = 1/
√
ξ + YR/σn, and

LR− = 1/
√
ξ− YR/σn. It was shown in [24, Eq(11)] that the optimal estimator for the real

part is

X̂R = YR +
σn√
ξ

e
2YR
σx erfc(LR+)− e−

2YR
σx erfc(LR−)

e
2YR
σx erfc(LR+) + e−

2YR
σx erfc(LR−)

(5.15)

where erfc(x) denotes the complementary error function. The optimal estimator for the

imaginary part X̂I is derived analogously in the same manner. The FFT coefficient estima-

tor is given by X̂ = X̂R + iX̂I .

5.5 Comparison Criteria

The performance of the algorithms are subject to some quality measures. We em-

ploy three criteria to evaluate the performances of all algorithms: SNR and word recognition

error rate. For all experiments, the estimated signal x̂[t] are normalized such that it has

the same covariance as the clean signal x[t] before computing the signal quality measures.
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5.5.1 Signal to Noise Ratio (SNR)

In time domain, SNR is defined by

SNR = 10 log10

∑
t(x[t])2∑

t(x̂[t]− x[t])2
(5.16)

where x[t] is original clean signal and x̂[t] is estimated signal.

5.5.2 Word Recognition Error Rate

We use the speech recognition engine provided on the ICSLP website [25]. The

recognizer is based on the HTK package. The inputs of the recognizer include MFCC,

its velocity (∆ MFCC) and its acceleration (∆∆ MFCC) that are extracted from speech

waveforms. The words are modeled by the HMM with no skipover states and 2 states for

each phoneme. The emission probability for each state is a GMM of 32 mixtures, of which

the covariance matrices are diagonal. The grammar used in the recognizer is the same as

the sentence grammar shown in section 5.1. More details about the recognition engine can

be found at [25].

For each input SNR condition, the estimated signals are fed into the recognizer. A

score of {0, 1, 2, 3} is assigned to each utterance depending on how many key words (color,

letter, digit) that are incorrectly recognized. The word recognition error rate in percentage

is the average of the scores of all 600 testing utterances divided by 3.
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Table 5.1: Signal to Noise Ratio (dB) of the speech enhanced by the algorithms listed in the leftmost
column. The speech is corrupted by SSN at 4 input SNR values. The gain and the noise spectrum
are assumed to be known. Wiener: Wiener filter, Wolfe99: perceptual model, Linear: linear approxima-
tion,SuperGauss: super Gaussian prior, LaplaceFFT: Laplace method in frequency domain, LaplaceLS:
Laplace method in log-spectral domain, Gaussian: Gaussian approximation, GSMM Lap FFT: FFT coef-
ficients estimation by GSMM using Laplace method, GSMM Lap LS: log-spectra estimation by GSMM
using Laplace method, GSMM Var FFT: FFT coefficients estimation by GSMM using variational approx-
imation, GSMM Var LA: log-spectra estimation by GSMM using variational approximation.

Input SNR -12dB -6dB 0dB 6dB

Wiener 1.05 3.49 6.73 10.70

Wolfe99 -3.29 -1.58 1.70 6.17

Linear -1.44 1.53 5.63 9.85

SuperGauss -2.94 1.61 5.25 9.37

LaplaceFFT -0.37 2.72 6.63 10.92

LaplaceLS -0.48 2.82 6.81 11.16

Gaussian -0.45 2.39 5.99 10.02

GSMM Lap FFT -1.14 1.80 5.97 10.44

GSMM Lap LS -1.31 1.49 5.45 9.29

GSMM Var FFT -1.14 2.28 6.56 11.09

GSMM Var LS -1.72 1.73 5.81 9.59

5.6 Performance Comparison with Fixed Gain and Known

Noise Spectrum

All the algorithms are applied to enhance the speech corrupted by SSN at various

SNR levels. They are compared by SNR and word recognition error rate. The Wiener filer,

which contains the strong and detailed signal prior from a clean speech, can be regarded as

an experimental upper bound.

Figure 5.2 and Figure 5.3 show the spectrograms of a female speech and a male

speech, respectively. The SNR for the noisy speech is 6dB. The Wiener filter can recover

the spectrogram of the speech. The methods based on the models in log-spectral domain
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Table 5.2: Word recognition error rate of the speech enhanced by the algorithms listed in the leftmost
column. The speech is corrupted by SSN at 4 input SNR values. The gain and the noise spectrum are
assumed to be known. See Table 5.1 for the description of algorithms. No Denoising stands for noisy
signal input without processing.

Input SNR -12dB -6dB 0dB 6dB

Wiener 18.51% 11.38% 7.43% 5.17%

Wolfe99 87.33% 84.78% 78.06% 62.61%

Linear 85.06% 68.67% 31.33% 9.78%

SuperGauss 87.56% 83.61% 62.17% 27.17%

LaplaceFFT 78.83% 59.06% 29.22% 11.83%

LaplaceLS 77.83% 50.22% 20.78% 6.22%

Gaussian 80.94% 65.78% 37.33% 16.56%

GSMM Lap FFT 83.91% 73.94% 57.66% 31.63%

GSMM Lap LS 82.21% 67.77% 38.14% 16.04%

GSMM Var FFT 84.24% 76.57% 45.62% 13.72%

GSMM Var LS 85.80% 76.33% 39.02% 14.08%

No Denoising 88.33% 88.22% 81.06% 43.33%

(Linear, LaplaceFFT, LaplaceLS, and Gaussian) can effectively suppress the SSN and re-

cover the spectrogram. Because the SuperGauss estimates the real and imaginary part

separately, the spectral amplitude is not optimally estimated which leads to a blurred spec-

trogram. The perceptual model (Wofle99) fails to suppress SSN because of its spectral

similarity to speech. For the algorithms based on the GSMM, the spectrograms of the

signals are recovered. The Laplace methods give clearer spectrogram than the variational

approximation.

Table 5.1 presents the output SNR’s for all the algorithms. They are graphically

shown in Figure 5.4. Wiener filter performs the best. Laplace methods (LaplaceFFT and

LaplaceLS) are very effective, and the LaplaceLS is better. This coincides with the belief

that the log-spectral amplitude estimator is more suitable for speech processing. The Gaus-
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sian approximation works comparably well to the Laplace methods with the advantage of

greater computational efficiency where no iteration is necessary. The linear approximation

provides inferior SNR. The reason is that this approach involves two hidden variables, which

may increase the uncertainty for signal estimation. The SuperGauss works better than per-

ceptual model (Wolfe99) which fails to suppress SSN. For GSMM, the frequency domain

algorithms (GSMM Lap FFT and GSMM Var FFT) give higher SNR than log-spectral

domain algorithms (GSMM Lap LS and GSMM Var LS), because the frequency coefficients

are more reliably estimated which produce better signals in time domain. Further, the algo-

rithms using GSMM is close to the top performer (LaplaceLS). Because GSMM estimates

both the FFT coefficients and log-spectra simultaneously which are correlated, and it is in

general harder to estimate two random variables than one, the Laplace method with GMM

in log-spectral domain perform better than GSMM.

The word recognition error rate of speeches enhanced by all the algorithms are

shown in Table 5.2 and Figure 5.5. The outstanding performance of Wiener filter may be

considered as an upper bound. The Linear and LaplaceLS give very low word recognition

error rate in the high SNR range, because they estimate the log-spectral amplitude, which

is a strong fit to the recognizer input (MFCC). LaplaceLS is better than Linear in the low

SNR range, because Linear involves two hidden variables to estimate. The LaplaceFFT

and Gaussian also improve the recognition remarkably. Because SuperGauss offers less

accurate spectral amplitude estimation, it gives lower word recognition rate. The Wolfe99

is not able to suppress SSN and the decrease in performance may be caused by the spectral

distortion. It is interesting to observe that for GSMM, the log-spectral domain algorithms

provide lower word recognition rate than the frequency domain algorithms, because the



68

more reliably estimated log-spectra fits the speech recognition engine and reduce the error

rate. Note that the LaplaceLS only estimates the log-spectra, while the GSMM estimated

both FFT coefficients and log-spectra which is in general harder. LaplaceLS gives the lowest

word recognition error rate.

5.7 Performance Comparison with Estimated Gain and Noise

Spectrum

Table 5.3: Signal to Noise Ratio (dB) of speech enhanced by algorithms based on Gaussian approxi-
mation. The speech is corrupted by SSN. Known Noise: known gain and noise spectrum. Scalar Gain:
estimated frequency-independent gain and noise spectrum. Vector Gain: estimated frequency dependent
gain and noise spectrum.

Input SNR -12dB -6dB 0dB 6dB clean

Known Noise -0.45 2.39 5.99 10.02

Scalar Gain -0.62 2.21 5.90 9.84 32.71

Vector Gain -0.93 1.77 5.12 8.40 15.32

Table 5.4: word recognition error rate of speech enhanced by algorithms based on Gaussian approxima-
tion. See Table 5.3 for the explanation of the algorithms.

Input SNR -12dB -6dB 0dB 6dB clean

Known Noise 80.94% 65.78% 37.33% 16.56% 1.44%

Scalar Gain 82.56% 65.61% 37.89% 17.33% 1.56%

Vector Gain 82.61% 69.11% 39.61% 17.00% 1.67%

No Denoising 88.33% 88.22% 81.06% 43.33% 1.44

The performances of the Gaussian approximation with the fixed gain versus the

estimated gain and noise spectrum are compared. The SNR and word recognition error
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rate of the enhanced speech are shown in Table 5.3 and Table 5.4, respectively. They

are graphically represented in Figure 5.6 and Figure 5.7. The performances are almost

identical, which demonstrate that, under Gaussian approximation, the learning of gain and

noise spectrum is very effective. Estimation of gain and noise degrades the performance

compared to the scenario of fixed gain and known noise spectrum very slightly. Furthermore,

with clean signal input, the estimated signal still has 32.71dB SNR for scalar gain and

15.32dB SNR for vector gain. The recognition error rate is also close to the results of the

clean signal input. The slight degradation in the vector gain case is because we have more

parameters to estimate.

Acknowledgement: This chapter contains materials in J. Hao, H. Attias, S. Na-

garajan, T.-W. Lee and T. Sejnowski, “Speech Enhancement, Gain, and Noise Spectrum

Adaptation Using Approximate Bayesian Inference”, IEEE Transactions on Audio, Speech,

and Language Processing, accepted for publication and J. Hao, T-W. Lee and T. Sejnowski,

“Speech Enhancement Using Gaussian Scale Mixture Models”, IEEE Transactions on Au-

dio, Speech, and Language Processing, submitted for publication.
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Figure 5.2: Spectrogram of a female speech ”lay blue with e four again”. (a) clean speech; (b) noisy
speech of 6dB SNR; (c-i) enhanced signals by (c) Wiener filter, (d) perceptual model (Wolfe), (e) linear
approximation (Linear), (f) super Gaussian prior (SuperGauss), (g) Laplace method in frequency domain
(LaplaceFFT) and (h)in log-spectral domain (LaplaceLS), (i) Gaussian approximation (Gaussian), (j)
FFT coefficients estimation by GSMM using Laplace method (GSMM Lap FFT), see Eq(4.40), (k) log-
spectra estimation by GSMM using Laplace method (GSMM Lap LS), see Eq(4.42), (l) FFT coefficients
estimation by GSMM using variational approximation (GSMM Var FFT), see Eq(4.58), (m) log-spectra
estimation by GSMM using variational approximation (GSMM Var LS), see Eq(4.60).
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Figure 5.3: Spectrogram of a male speech ”lay green at r nine soon”. (a) clean speech; (b) noisy speech
of 6dB SNR; (c-m) enhanced signal by various algorithms. See Figure 5.2.
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Figure 5.4: Plot of the signal to noise ratios of speeches enhanced by various algorithms. The speech is
corrupted at 4 input SNR values. The gain and the noise spectrum are assumed to be known. See Table
5.1 for description of the algorithms.
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Figure 5.5: Plot of the word recognition error rate of speeches enhanced by the algorithms. The speech
is corrupted at 4 input SNR values. The gain and the noise spectrum are assumed to be known. See
Table 5.2 for description of the algorithms.
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Figure 5.6: Plot of the signal to noise ratio of speeches enhanced by the algorithms. The speech is
corrupted at 4 input SNR values. KnownNoise: known gain and noise spectrum; ScalarGain: estimated
frequency-independent gain and noise spectrum; VectorGain: estimated frequency dependent gain and
noise spectrum.
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Figure 5.7: Plot of the recognition error rate of speeches enhanced by algorithms based on Gaussian ap-
proximation. The speech is corrupted by SSN. KnownNoise: known gain and noise spectrum; ScalarGain:
estimated frequency-independent gain and noise spectrum; VectorGain: estimated frequency dependent
gain and noise spectrum; NoDenoising: noisy speech input.
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6

Introduction to Independent

Vector Analysis Models

Independent component analysis (ICA) [27] is a well-known algorithmic method

that is very successful in solving the blind source separation (BSS) problem. The underlying

assumption of ICA is that the observations are linear mixtures of hidden sources that

are statistically independent and thus the sources can be separated by maximizing the

independence of the outputs. Various ICA algorithms have been proposed based on the

source models and the characterization of independence (See [28]).

Separation of convolutive mixtures have been tackled in the frequency (or time-

frequency) domain where the bin-wise mixture is approximately linear and thus simple

ICA algorithms can be applied. However, because ICA is blind to permutation and the

permutation disorder results in erratic signal reconstruction, permutation has to be aligned

after bin-wise separation. Attempts to solve the permutation problem have depended on

computing the cross-correlation [29] or direction of arrival [30] of the frequency components,
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or by smoothing the filter [31].

A more desirable approach is to exploit the dependency among the frequency

components during the separation process. Independent vector analysis (IVA) is a recent

framework whose mixture model consists of multiple layers of linear ICA mixtures as in

frequency-domain BSS, where the source components have dependency across the layers

to form a multivariate source, or vector, and is independent of other vectors (Figure 6.1)

[32, 33]. IVA captures the intra-source dependency while it enforces the inter-source inde-

pendence, and thus avoids the permutation problem [32].

ICA and IVA algorithms have been derived in maximum likelihood (ML) frame-

work where independence is achieved via factorized source priors. Typically, the source

priors are pre-specified and only the mixing matrix (or its inverse) is estimated by max-

imizing the likelihood. In this case, reliable statistical properties of the sources have to

be known in advance. The true source models, however, are usually unknown or unavail-

able. Also, in IVA, it becomes even more difficult to model the sources since they are

multidimensional and often, high-dimensional.

Independent factor analysis (IFA) assumes that the sources are statistically inde-

pendent and each source can be modeled with a Gaussian mixture model (GMM). Contrary

to those ICA algorithms where the source priors are fixed, IFA also estimates the parameters

of the source priors from the data. Given the fact that GMM can model any distribution

accurately with sufficiently large number of mixtures, in principle, IFA can separate sources

of arbitrary distribution.

We present an adaptive IVA approach to separate convolutively mixed signals.

Motivated by IFA and IVA, we model the joint probability density function (PDF) of the
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frequency components originating from the same source by GMM. The proposed approach

employs the flexibility of source prior similar to IFA while avoiding the permutation problem.

In addition, our model allows sensor noise, which has not been considered in the previous

ML approaches of IVA. An efficient EM algorithm is derived to estimate the mixing matrices

and the parameters of GMM. Signal estimation is achieved through Bayesian inference by

computing the minimum mean square error (MMSE) of the signal posterior distribution.

6.1 Independent Vector Analysis Model

6.1.1 Acoustic Model for Convolutive Mixing

We will focus on 2 × 2 problem, i.e. two sources and two microphones. Some of

our algorithms can be generalized to multiple sources/microphones. Let xj [t] be the sources

j and yl[t] be the channel l, at time t. The mixing process can be accurately described by

the convolution. We consider both noisy case and noiseless case here,

Noiseless IVA: yl[t] =
2∑
j=1

T−1∑
τ=0

hlj [t](τ)xj [t− τ ] (6.1)

Noisy IVA: yl[t] =
2∑
j=1

T−1∑
τ=0

hlj [t](τ)xj [t− τ ] + nl[t] (6.2)

where hlj [t] is time domain transfer function from jth source to lth channel, and ni[t] is the

noise. Although the Noiseless IVA is a special case of noisy IVA by setting ni[t] = 0, the

algorithms are quite different and treated separately.

Let Ykt = (Y1kt, Y2kt)T , Xkt = (X1kt, X2kt)T , Nkt = (N1kt, N2kt)T , be the vectors

of the FFT coefficients of the mixed signals, the sources, and the sensor noise, respectively.
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Applying the fast Fourier transform (FFT), the convolution becomes multiplicative

Noiseless IVA: Ykt = Ak(t)Xkt (6.3)

Noisy IVA: Ykt = Ak(t)Xkt + Nkt (6.4)

where Ak(t) is frequency domain response function corresponding to hij [t]. The Ak(t) is

called the mixing matrix because it mixes the sources. Its inverse, Wk(t) = A−1
k (t), is

called unmixing matrix, which separates the mixed signals. Figure 6.1 shows the mixture

model of IVA.
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Figure 6.1: The mixture model of independent vector analysis (IVA). Dependent source components
across the layers of linear mixtures are grouped into a multidimensional source, or vector.
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6.1.2 Probabilistic Models for Source Priors

Because there are no true models for speech [3], a flexible model that can capture

the statistical properties of each source is often desired. The probability density function

(PDF) for each source is assumed to be a Gaussian mixture model (GMM) which can

approximate any continuous distributions given the parameters are properly chosen [1].

Assuming the sources are statistically independent

p(X1, · · · ,XK) =
2∏
j=1

p(Xj1, · · · , XjK)

p(Xj1, · · · , XjK) =
∑
sj

p(sj)
∏
k

N (Xjk|0, νksj ) (6.5)

The sj is the state indexing the mixture components. The Gaussian PDF

N (Xjk|0, νksj ) =
νksj
π
e
−νksj |Xjk|

2

(6.6)

is of the complex variables Xjk. The precision, defined as the inverse of the covariance,

satisfies 1/νksj = E{|Xjk|2|sj}.

Consider the vector of frequency components from the same source j, {Xj1, · · · , XjK}.

Note that although the GMM has a diagonal precision matrix for each state, the joint PDF

p(Xj1, · · · , XjK) doesn’t factorize, i.e. the inter-dependency among the components of a

vector of the same source is captured. However, the vectors originating from different

sources are independent. This model is called Independent Vector Analysis (IVA). The ad-

vantage of IVA over ICA is that the inter-frequency dependency prevents the permutation.

All the frequency bins are separated in a correlated manner, rather than separately as in

ICA.
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For noisy IVA, we assume a Gaussian noise with precision γ,

p(Yk|Xk) =
γLk
πL
e−γk|Yk−AkXk|2 (6.7)

where we assume the L channels have the same noise level.

The full probability is given by

p(Y1, · · · ,YK ,X1, · · · ,XK , s) =
K∏
k=1

p(Yk|Xk)
2∏
j=1

(∏
k

p(Xjk|sj)p(sj)
)

(6.8)

where s = (s1, s2) is the collective state index.

The source priors can be trained in advance or estimated directly from the mixed

observations. Due to the complexity of our model and the limited data, estimating the

GMM for all source priors is difficult. Depending on the application, we can pre-train the

priors for some sources and leave the others adaptive. The mixing matrices Ak(t) and the

noise spectrum γk are estimated from the mixed observations using an EM algorithm de-

scribed later. Separated signals are constructed using minimum mean square error (MMSE)

estimator.

6.1.3 Related Work

The independent factor analysis (IFA) [34] also uses a GMM for each independent

component whose parameters are learned from the mixed signal together with the mixing

matrices. The GMM’s for each source could be different, thus it is able to separate various

types of sources with different statistical properties. However, IFA is derived in the time

domain and can’t solve sources with convolutions. IVA generalizes IFA to the vector version,
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in which frequency bins originating from the same source are jointly modeled by a GMM.

This dependency can group the frequency components from each source together, thus

preventing the permutation. The GMM has a small number of mixtures and efficiently

represents the joint PDF.

Motivated by the super-Gaussian nature of speech signals, a multivariate Laplace

is often used for the source priors in [32],

p(Xj1, · · · , XjK) ∝ e−
√
‖Xj1‖2+···+‖XjK‖2 (6.9)

Note that this model captures the inter-frequency dependency. However, it assumes the

identical priors for all sources and all the frequency bins have the same marginal PDF. In

contrast, for acoustic signal, the PDF’s of different frequency bins are likely to differ.

Our IVA model includes the advantage of both previous models. By using a GMM

for the joint PDF, the inter-dependency is preserved and permutation is prevented. IVA,

like IFA, uses GMM source prior and can handle noisy mixing and noiseless mixing. In

contrast to multivariate Laplacian, the GMM source prior, can adapt to each source and

separate various types of signals, e.g. speech and music. Further, for noisy mixing, the IVA

can suppress the noise and enhance the sources quality.

Acknowledgement: This chapter contains materials in J. Hao, I. Lee, T.-W. Lee

and T. Sejnowski, “Source Separation with Independent Vector Analysis”, to be submitted.
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Independent Vector Analysis for

Noiseless Case

When the sensor noise is absent, the mixing process is given by Eq(6.3),

Ykt = Ak(t)Xkt (7.1)

The parameters θ = {Akt(t), νksj , p(sj)} are estimated by maximum likelihood using the

EM algorithm.
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7.1 Pre-whitening and Unitary Mixing/Unmixing Matrices

The scaling of Xkt and Ak(t) in Eq(7.1) can not be uniquely determined by ob-

servations Yk(t). Thus we can pre-whitened the observations

Qkt̄ =
t̄∑
t=0

λt̄−tYktY
†
kt = λQkt̄−1 + Ykt̄Y

†
kt̄

(7.2)

Ykt ← Q
− 1

2

kt̄
Ykt (7.3)

where λ is a parameter for the online learning that will be explained later. The whitening

process removes the second order correlation and Yk has an identity covariance matrix,

which facilitates the separation.

To be consistent with this whitening processes, we assume the priors are also

white, E{|Xk|2} = 1. The speech priors capture the high-order statistics of the sources,

which enables IVA to achieve source separation.

It is more convenient to work with the demixing matrix defined as Wkt(t) =

A−1
kt (t). Because of the pre-whitening process, both mixing matrix Ak(t) and demixing

matrix Wk(t) are unitary, I = EYktY
†
kt = EAk(t)XktX

†
ktAk(t)† = Ak(t)Ak(t)†. The

inverse of unitary matrix is also unitary.

We consider the case of two sources and two sensors, and express the 2×2 unitary

matrices Wk(t) using the Cayley-Klein parametrization

WkT =

 akT bkT

−b∗kT a∗kT

 s.t. akTa
∗
kT + bkT b

∗
kT = 1 (7.4)
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7.2 The Weighted Likelihood Function

We propose a general likelihood function

L(θ) =
T∑
t=1

λT−t log p(Y1t, · · · ,YKt)

=
T∑
t=1

λT−t log

(∑
st

K∏
k=1

p(Ykt|st)p(st)
)

(7.5)

For 0 ≤ λ ≤ 1 the past samples are weighted less and the recent samples are weighted more.

The regular likelihood is obtained when λ = 1. The lower bound of L(θ) is

L(θ) ≥
∑
tst

λT−tq(st) log
∏K
k=1 p(Ykt|st)p(st)

q(st)

= F(q, θ) (7.6)

for distribution q(st) due to Jensen’s inequality. Note that because of the absence of noise,

Xkt is determined by Ykt and is not hidden variable. We maximized L(θ) using the EM

algorithm, which iteratively maximized F(q, θ) over q(st) (E-step) and over θ (M-step) until

convergence.
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7.3 The Expectation Maximization Algorithm

7.3.1 Expectation Step

For fixed θ, the q(st) that maximize F(q, θ) satisfies

q(st) =
∏K
k=1 p(Ykt|st)p(st)
p(Y1t, · · · ,YKt)

(7.7)

Using Ykt = Wk(t)Xkt, we obtain

p(Ykt|st) = p(Xkt = Wk(t)Ykt|st) = N (Ykt|0,Σkst) (7.8)

The precision matrix Σkst is given by

Σkst = W†
k(t)ΦkstWk(t); Φkst =

 νks1 0

0 νks2

 (7.9)

Its determinant is det(Σkst) = νks1νks2 , because Wk(t) is unitary.

We define the function f(st) as following

f(st) =
∑
k

log p(Ykt|st) + log p(st) (7.10)

Use Eq(7.7), q(st) ∝ ef(st)

Zt =
∑
st

ef(st) (7.11)

q(st) =
1
Zt
ef(st) (7.12)
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7.3.2 Maximization Step

The parameters θ was estimated by maximizing the cost function F . We consider

two cases: batch algorithm and online algorithm.

Batch M-step: λ = 1

First, we consider the maximization of F over Wk under a unitary constraint. To

preserve the unitarity of Wk, using the Cayley-Klein parametrization in Eq(7.4), rewrite the

precision as Φkst =

 νks1 − νks2 0

0 0

 +

 νks2 0

0 νks2

 and introduce the Lagrangian

multiplier βk. After some manipulation and ignoring the constant terms in Eq(7.6), the

Wk maximize

−
∑
tkst

λT−tq(st)

(νks1 − νks2)Y†ktW
†
k

 1 0

0 0

WkYkt

+ βk(aka∗k + bkb
∗
k − 1)

= −
∑
tkst

λT−tq(st)(νks1 − νks2)|akY1kt + bkY2kt|2 + βk(aka∗k + bkb
∗
k − 1) (7.13)

Because this is quadratic in ak and bk, an analytical solution exists. Setting the derivatives

with respect to ak and bk to zero, we have

MkT

 a∗k

b∗k

 = βk

 a∗k

b∗k

 (7.14)

where MkT is defined as

MkT =
∑
tst

q(st)(νks1 − νks2)YktY
†
kt (7.15)
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The vector (ak, bk)† is the eigenvector of MkT with smaller eigenvalue. This can be shown

as follows.

Use Eq(7.15), we compute the value of the objective function Eq(7.13)

−Tr


∑
tkst

q(st)(νks1 − νks2)YktY
†
ktW

†
k

 1 0

0 0

Wk

 (7.16)

= −Tr

MkT

 a∗k

b∗k

 (ak bk)

 = −βk (7.17)

Thus the eigenvector associated with the smaller eigenvalue gives the higher value of the

cost function. Thus (ak, bk)† is the eigenvector of MkT with the smaller eigenvalue.

The eigenvalue problem in Eq(7.14) can be solved analytically for the 2× 2 case.

Write MkT

MkT =

 M11 M12

M21 M22

 (7.18)

where M11, M22 are real and M21 = M∗12, because MkT is Hermitian. Ignored the subscript

k for simplicity. Its eigenvalues are M11+M22
2 ±

√
(M11−M22)2

4 + |M12|2 which are real and

the smaller one is

βk =
M11 +M22

2
−
√

(M11 −M22)2

4
+ |M12|2 (7.19)

and the corresponding eigenvector is

 a∗k

b∗k

 =
1√

1 + (βk−M11

M12
)2

 1

βk−M11

M12

 (7.20)
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This analytical solution avoids complicated matrix calculations and greatly improves the

efficiency.

Maximizing F(q, θ) over {νksj , p(sj)} is straightforward. For the precision νksj , we

have

1
νksj=r

=

[∑
t,st

q(sjt = r)WkYktY
†
ktW

†
k

]
jj∑

t,st
q(sjt = r)

(7.21)

where [·]jj denotes the (j, j) element of the matrix. The state probability is

p(sj = r) =
∑T

t=1 q(sjt = r)
T

(7.22)

The cost function F is easily accessible as a by-product of the E-step. Use Eq(7.10)

and Eq(7.11), we have Zt = p(Y1t, · · · ,YKt) and

F(q, θ) =
∑
t

log p(Y1t, · · · ,YKt) =
∑
t

log(Zt), (7.23)

One appealing property of the EM algorithm is that the cost function F always increases.

This property can be used to monitor convergence. The above E-step and M-step iterate

until some convergent criterion is satisfied.

Online M-step: general λ

Note the in the E-step, the posterior PDF was computed for each observation.

For online EM algorithm, the E-step used the updated parameters at t̄ when computing

the posterior PDF of the sample Ykt̄. Each sample was used only once and the E-step was

sequential.

We now derive an M-step that updates the parameters sequentially. As in the
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batch algorithm, the (ak(t), bk(t))† is the eigenvector of Mk(t̄) with the smaller eigenvalue,

Mk(t̄)

 a∗k(t̄)

b∗k(t̄)

 = βk

 a∗k(t̄)

b∗k(t̄)

 (7.24)

where Mk(t̄) is defined as

Mk(t̄) =
t̄∑
tst

λt̄−tq(st)(νks1 − νks2)YktY
†
kt (7.25)

= λMk(t̄− 1) +
∑
st̄

q(st̄)(νks1 − νks2)Ykt̄Y
†
kt̄

(7.26)

This matrix was computed online and recursively.

To derive the update rules for {νksj , p(sj)}, define the effective number of samples

belong to state r, up to time t̄, for source j

mjr(t̄) =
t̄∑
t=1

λt̄−tq(sjt = r) = λmjr(t̄− 1) + q(sjt̄ = r) (7.27)

Then

1
νksj=r(t̄)

=

[∑
t,st

λt̄−tq(sjt = r)Wk(t̄)YktY
†
ktWk(t̄)†

]
jj∑

t,st
λt̄−tq(sjt = r)

(7.28)

=
1

νksj=r(t̄− 1)
mjr(t̄− 1)
mjr(t̄)

+
q(sjt̄ = r)
mjr(t̄)

[
Wk(t̄)YktY

†
ktWk(t̄)†

]
jj

(7.29)

p(sj = r) =
∑t̄

t=1 λ
t̄−tq(sjt = r)
T

=
mjr(t̄)∑
rmjr(t̄)

(7.30)
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7.4 Post-processing for Spectral Compensation

Because the estimated signal X̂kt = Wk(t)Ŷkt has a flat spectrum inherited from

the whitening processes, it is not appropriate for signal reconstruction and the signal spec-

trum needs scaling corrections.

Let Xo
kt denote the original sources without whitening and Ao

kt denote the real

mixing matrix. The whitened mixed signal satisfies both Ykt = Q−1/2
kt Ao

tkX
o
kt and Ykt =

AktX̂kt. Thus X̂kt = DktXo
kt, where Dkt = A−1

kt Q−1/2
kt Ao

kt. Recall that the components

of X̂kt and Xo
kt are independent, X̂kt must be the scaled version of Xo

kt because the IVA

prevents the permutations, i.e. the matrix Dkt is diagonal. Thus,

diag(Ao
kt)X

o
kt = diag(Q1/2

kt AktDkt)Xo
kt = diag(Q1/2

kt Akt)X̂kt (7.31)

where “diag” takes the diagonal elements of a matrix. This commutes with the diagonal

matrix Dkt. We term the matrix diag(Q1/2
kt Akt) the spectrum compensation operator, which

compensates the estimated spectrum X̂kt,

X̃kt = diag
(
Q1/2
kT W−1

kt

)
X̂kt (7.32)

Note the separated signals are filtered by diag(Ao
kt) and could suffer from reverberations.

The estimated signals can be considered as the recorded version of the original sources.

After applying the inverse FFT to X̃kt, the time domain signals can be constructed by

overlap-adding, if some window is applied.

Acknowledgement: This chapter contains materials in J. Hao, I. Lee, T.-W. Lee

and T. Sejnowski, “Source Separation with Independent Vector Analysis”, to be submitted.
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Independent Vector Analysis for

the Noisy Case

When the sensor noise Nkt exists, the mixing process is given in Eq.(6.4),

Ykt = AkXkt + Nkt (8.1)

The parameters θ = {Ak, νksj , p(sj), γk} are estimated by maximum likelihood using the

EM algorithm. If the prior for some sources are pre-trained, their corresponding parameters

{νksj , p(sj)} are fixed.

8.1 Mixing/Unmixing Matrices are Not Unitary

Due to the existence of noise, the mixing matrices Ak are not unitary. We assume

the noise on the channels are uncorrelated. The whitening process causes the noise to

be correlated, which is difficult to model and learn. For the noisy IVA, the mixed signal
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are not pre-whitened and the mixing/unmixing matrices are not assumed to be unitary.

In experiments, initializing Ak to be the whitening matrix was not optimal, because a

single valuation decomposition using MATLAB gave the eigenvalues in decreasing order and

introduced an initial permutation bias. Thus we simply initialized Ak to be the identity

matrix.

8.2 The Log-Likelihood Function

The log-likelihood function is

L(θ) =
T∑
t=1

log p(Y1t, · · · ,YKt)

=
∑
t

log

 ∑
st=(s1t,s2t)

K∏
k=1

∫
p(Ykt,Xkt|st)p(st)dXkt


≥
∑
tst

∫ K∏
k=1

q(Xkt|st)q(st)× log
∏K
k=1 p(Ykt,Xkt|st)p(st)∏K

k=1 q(Xkt|st)q(st)
dXkt

= F(q, θ) (8.2)

The inequality is due to Jensen’s inequality and is valid for any PDF q(Xkt, st). Equality

F = L occurs q equals to the posterior PDF q(Xkt, st) = p(Xkt, st|Y1t, · · · ,YKt).

8.3 Expectation Maximization Algorithm

The EM algorithm for maximizing L consists of iteratively maximizing F(q, θ) over

q (Expectation step) and θ (Maximization step), until convergence. The EM algorithm is

presented below.
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8.3.1 Expectation Step

For fixed θ, the q(Xkt|st) that maximizes F(q, θ) satisfies

q(Xkt|st) = p(Xkt|st,Ykt) =
p(Ykt|Xkt)p(Xkt|st)

p(Ykt|st)
(8.3)

which is a Gaussian PDF given by

q(Xkt|st) = N (Xkt|µktst ,Φkst) (8.4)

µktst = γkΦ−1
kst

A†kYkt (8.5)

Φkst = γkA
†
kAk +

 νks1t 0

0 νks2t

 (8.6)

where † denotes the Hermitian (complex conjugate transpose).

To compute the optimal q(st), define the function f(st)

f(st) =
∑
k

log p(Ykt|st) + log p(st)

=
∑
k

(
log |Σkst

π
| −Y†ktΣkstYkt

)
+ log p(st) (8.7)

where p(Ykt|st) =
∫
p(Ykt|Xkt)p(Xkt|st)dXkt = N (Ykt|0,Σkst) and the precision Σkst is

Σ−1
kst

= Ak

 1
νks1

0

0 1
νks2

A†k +
1
γk

 1 0

0 1

 (8.8)
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The optimal q(st) ∝ ef(st) is

q(st) =
1
Zt
ef(st) (8.9)

Zt =
∑
st

ef(st) (8.10)

8.3.2 Maximization Step

The M-step maximize the cost F over θ, which is achieved by setting the derivatives

of F to zero.

Setting the derivative of F(q, θ) with respect to Ak to zero, we obtain

AkUk = Vk (8.11)

where

Uk =
T∑
t=0

∑
st

Eq{XktX
†
kt} (8.12)

Vk =
T∑
t=0

∑
st

Eq{YktX
†
kt} (8.13)

The expectations are given by

Eq{YktX
†
kt} =

∑
st

q(st)Yktµ
†
ktst

(8.14)

=
∑
st

q(st)γkYktY
†
ktAkΦ−1

kst
(8.15)

Eq{XktX
†
kt} =

∑
st

q(st)
(
Φ−1
kst

+ µktstµ
†
ktst

)
(8.16)

=
∑
st

q(st)
(
Φ−1
kst

+ γ2
kΦ
−1
kst

A†kYktY
†
ktAkΦ−1

kst

)
(8.17)
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The bottleneck of the EM algorithm lies in the computation of µktst in the expectation

step, which is avoid by using Eq(8.5). Fortunately, the common terms can be computed

once and YktY
†
kt can be computed in advance.

Similarly, we can obtain the update rules for the parameters of the source j,

{νksj , p(sj)} and the noise precision γk.

1
νksj=r

=

[∑
t,st

δrsjtq(st)(Φ
−1
kst

+ µktstµ
†
ktst

)
]
jj∑

t,st
δrsjtq(st)

(8.18)

p(sj = r) =

∑
t,st

δrsjtq(st)∑
t,st

q(st)
=

1
T

∑
t

q(sjt = r) (8.19)

1
γk

=
∑

tE
q{(Ykt −AkXkt)†(Ykt −AkXkt)}

2T

=
1

2T

∑
t

Tr
[
YktY

†
kt −AkE

q{XktY
†
kt}

−A†kE
q{YktX

†
kt}+ AkE

q{XktX
†
kt}A

†
k

]
(8.20)

where the δrsjt is the the Kronecker delta function: δrsjt = 1 if sjt = r and δrsjk = 0

otherwise. Essentially, the state for the second source is fixed to be r. The [·]jj denotes the

(j, j) element of the matrix. The identity Y†kYk = Tr[YkY
†
k] is used. The Eq{YktX

†
kt} is

given by Eq(8.14), Eq{XktY
†
kt} = Eq{YktX

†
kt}† and Eq{XktX

†
kt} is given by Eq(8.16).



98

8.4 Signal Estimation and Spectral Compensation

Unlike the noiseless case, the signal estimation is nonlinear. The MMSE estimator

is

X̂kt =
∑
st

q(st)µktst (8.21)

which is the average of the means µktst weighted by the posterior state probability.

Because the estimated signal X̂kt had a flat spectrum and was not appropriate for

signal reconstruction, it needed scaling correction. Let Xo
kt denote the original sources with-

out whitening and Ao
kt denote the real mixing matrix. Under the small noise assumption,

the mixed signal satisfies both Ykt = Ao
ktX

o
kt and Ykt = AktX̂kt. Thus X̂kt = DktXo

kt,

where Dkt = A−1
kt Ao

kt. Recall that the components of X̂kt and Xo
kt were independent, so

X̂kt must be the scaled version of Xo
kt because the IVA prevents permutations, i.e. the

matrix Dkt has to be diagonal. Thus,

diag(Ao
kt)X

o
kt = diag(AktDkt)Xo

kt = diag(Akt)X̂kt (8.22)

where “diag” takes the diagonal elements of a matrix which commutes with the diagonal

matrix Dkt. We term the matrix diag(Akt) the spectrum compensation operator, which

compensates the estimated spectrum X̂kt,

X̃kt = diag (Akt) X̂kt (8.23)

Note the separated signals are filtered by diag(Ao
kt) and could suffer from reverberations.

The estimated signals can be considered as the recorded version of the original sources.
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After applying the inverse FFT on X̃kt, time domain signals can be constructed by overlap-

adding, if some window is applied.

8.5 On the Convergence and the Online Algorithm

The mixing process reduces to noiseless case in the limit of zero noise. Contrary to

the intuition, the EM algorithm for estimating the mixing matrices will not reduces to the

noiseless case. The convergence is slow when the noise level is low because the update rule

for Ak depends on the precision of noise. It has been shown in [35], the Taylor expansion

of the learning rule is

Ak ← Ak +
1
γk

Ãk +O(
1
γ2
k

) (8.24)

Thus the learning rate is zero when the noise goes to zero, γk = ∞, essentially, Ak won’t

be updated. For this reason, the EM algorithm for noiseless IVA is derived in Chapter 7.

In principle, we can derive an online algorithm for the noisy case in a similar

manner to the noiseless case. All the variables needed for the EM algorithm can be computed

recursively. Thus the parameters of the source priors and the mixing matrices can be

updated online. However, online algorithm for the noisy case is difficult because the speed

of convergence depends on the precision of noise and as well as the learning rate λ we used

in Chapter 7.

Acknowledgement: This chapter contains materials in J. Hao, I. Lee, T.-W. Lee

and T. Sejnowski, “Source Separation with Independent Vector Analysis”, to be submitted.
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Experimental Results for Source

Separation with IVA

We demonstrate the performance of the proposed algorithm by using it to separate

the speech from music. Music and speech have different statistical properties, which pose

difficulties for IVA using identical source priors.

9.1 Dataset Description

The music signal is a disco with a singer’s voice. It is about 4.5 minutes long and

sampled as 8k Hz. The speech signal is a male voice downloaded from the University of

Florida audio news. It is about 7.5 minutes long and sampled at 8k Hz. These two sources

were mixed together, and the task was to separate them. In the noisy IVA case, a Gaussian

noise at 10 dB is added to the mixtures. The goal was to suppress the noise as well as

separate the signals.

Due to the flexibility of our model, it cannot learn the separation matrices and

100
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source priors from random initialization. Thus we used the first 2 minutes of signals to train

the GMM as an initialization, which was done using the standard EM algorithm [1]. First,

a Hanning window of 1024 samples with a 50% overlap was applied to the time domain

signals. Then FFT was performed on each frame. Due to the symmetry of the FFT, only

the first 512 components are kept because the rest provides no additional information. The

next 30 seconds of the recordings were used to evaluate the algorithms.
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Figure 9.1: The size of the room is 7m× 5m× 2.75m. The distance between two microphones is 6cm.
The sources are 1.5m away from the microphones. The heights of all sources and microphones are 1.5m.
The letters (A-G) indicates the position of sources.

The 30 seconds long mixed signals were obtained by simulating impulse responses

of a rectangular room based on the image model technique [36, 37]. The geometry of

the room is shown in 9.1. Similarly, a 1024-point Hanning window with 50% overlap was
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applied and the FFT was used on each frame to extract the frequency components. The

mixed signals in the frequency domain were processed by the proposed algorithms, as well

as the benchmark algorithms.

9.2 Benchmark: Independent Vector Analysis with Lapla-

cian Prior

The independent vector analysis was originally proposed in [32] where the joint

distribution of the frequency bins was assumed to be a multivariate Laplacian

p(Xj1, · · · , XjK) ∝ e−
√
|Xj1|2+···+|XjK |2 (9.1)

This IVA models assumed no noise. As a results, the unmixing matrix Wk could be assumed

to be unitary, because the mixed signals were pre-whitened and estimated by maximum

likelihood, defined as

L =
∑
t

log p(X11t, · · · , X1Kt) + log p(X21t, · · · , X2Kt)

= −
∑
t

√∑
k

|X1kt|2 −
∑
t

√∑
k

|X2kt|2 + c (9.2)

where c is a constant and Xkt = (X1kt;X2kt) is computed as Xkt = WkYkt.

Optimizing L over Wk was done using gradient ascent

∆Wk = η
∂L
Wk

(9.3)

= η
∑
t

ϕktY
†
kt (9.4)
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where ϕkt = ( X1kt√∑
k |X1kt|2

, X2kt√∑
k |X2kt|2

)†, is the derivative of the logarithm of the source

prior. The natural gradient is obtained by multiplying the right hand side by W†
kWk. The

update rules become

∆Wk = η
∑
t

ϕktX
†
ktWk (9.5)

Wk ←
(
WkW

†
k

)− 1
2 Wk (9.6)

where η is the learning rate and in all experiments we used η = 5. Eq(9.6) guarantees that

Wk is unitary.

Because the mixed signals are pre-whiten and the scaling of the spectrum needs

correction, as done in section 7.4 of Chapter 7.

9.3 Signal to Interference Ratio

The signal-to-interference ratio (SIR) for source j is defined as

SIRj = 10 log

(∑
tk |[ŴktXo

kt]jj |2∑
tk |[ŴktXo

kt]lj |2

)
(9.7)

Ŵkt = diag
(
Q

1
2 Ŵkt

)
ŴktQ

− 1
2

kt Ao
kt (9.8)

where Xo
kt is the original source. The overall impulse response Ŵkt consists of the real mixing

matrix, Ao
kt, obtained by performing FFT on the time domain impulse response hij [t], the

whitening matrix, Q
− 1

2
kt , the separation matrix, Ŵkt, estimated by the EM algorithm, and

the spectrum compensation, diag
(
Q

1
2 Ŵkt

)
. The numerator in Eq(9.7) takes the power of

the estimated signal j, which is on the diagonal. The denominator in Eq(9.7) computes the
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power of the interference, which is on the off-diagonal, l 6= j. Note that the permutation is

prevented by IVA and its correction is not needed.

9.4 Results for Noiseless IVA
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Figure 9.2: The plot of the likelihood value as a function of iterations. The EM algorithm guarantees
the increase of the likelihood. When the source priors are updated, the likelihood has a jump.

The noiseless IVA optimizes the likelihood using the EM algorithm, which guar-

antees that the cost function increases. The mixed signal is whitened and the unmixing

matrices are initialized to be identity. The number of states in the GMM was 15. The

typical learning curve is shown in Figure 9.2. The two jumps correspond to the updating

of the source priors. When the source priors are not updated, the curve has no jumps.

The convergence was very fast, less than 50 iterations, with each iteration taking about 1
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Table 9.1: Signal to interference ratio for noiseless IVA for various source locations. IVA-GMM stands
for the proposed IVA using GMM as source prior, and IVA-Lap is benchmark with Laplacian source prior.
IVA-GMM1 updates sources, while IVA-GMM2 with source prior fixed. The first number in each cell is
the SIR of the speech, and the second number is the SIR of the music.

Source Location D,A D,B D,C D,E D,F D,G

IVA-Lap 11.5,18.9 11.3,13.7 11.1,12.7 10.7,15.0 11.7,18.9 12.4,19.3

IVA-GMM1 17.9,20.6 17.5,13.8 16.4,12.9 16.8,17.6 19.0,19.9 20.3,20.4

IVA-GMM2 19.7,20.7 15.1,15.7 14.0,14.0 16.8,18.6 19.6,20.2 21.4,20.8

second. In contrast, the IVA with a Laplacian prior took around 300 iterations to converge.

The speech source was placed at 30◦, and the music was placed at several positions. The

proposed IVA-GMM improved the SIR of the speech, compared to the IVA with a Lapla-

cian prior, IVA-Lap. Because the disco music is a mixture of many instruments and is a

more Gaussian signal due to the center limit theorem, the Laplacian distribution cannot

model the music accurately. As a result, the music signal leaks into the speech channel and

degrades the SIR of speech. The proposed IVA use a GMM to model music, which is more

accurate than Laplacian. Thus it prevented the leaking of music into speech and improved

the separation by 5 − 8 dB SIR. However, the improvement of the music is not significant

because both models properly model the speech and prevent it from leaking into music.

9.5 Results for Online Noiseless IVA

We applied the online IVA algorithm to separate non-stationary mixtures. The

speech was fixed at location −50◦. The musical source was initially located at −40◦ and

moved to 50◦ at constant speed of 1◦ per second, then move backward at the same speed

to 20◦. Figure 9.3 shows the trajectory of the source: B1 → B2 → B3.
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Figure 9.3: The speech is fixed at position A and the music move from B1 to B2 and back to B3 at
speed of 1◦ per second.

We set the weight λ = 0.95 in our experiment, which corresponds roughly to a 5%

change in the statistics for each sample. Too small λ overfits the recent samples, while too

large a value slows down the adaption. The choice of λ = 0.95 provided good adaption as

well as reliable source separation. We trained a GMM with 15 states using the first 2 minutes

of original signals, which was used to initialize the source priors of the online algorithm.

The unmixing matrices were initialized to be identity. The number of EM iteration for

the online algorithm is set to 1. Running more than one iteration was ineffective, because

the state probability computed in the E-step change very little when the parameters are

changed by one sample. The output SIR for speech and music are shown in Figure 9.4 and
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Figure 9.4: The output SIR for speech separated by online IVA algorithm. The speech is fixed at −50◦

and music moves from B1 to B2 and back to B3 as indicated in Figure 9.3 at a speed of 1◦ per second.

Figure 9.5, respectively. The beginning period has low SIR values. The reason is due to the

adaptation processes. The statistics for the beginning period were not estimated accurately

and the separation performance was low for the first 10 seconds. The SIR improved as

more samples were available and the sources were separated after 10 seconds. The SIR’s

for both speech and music were computed locally using the unmixing matrix for each frame

and 5 seconds of original signals. The silent period of speech had very low energy, which

decreased the SIR. The drops of the SIR in Figure 9.4 corresponded to the silences in the

speech singles. The output SIR for the disco music was more consistent than that of speech.

However, there was a drop of the SIR for both speech and music at around 80 second, when

the singer’s voice reached a climax in disco music which confused the IVA with the human
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Figure 9.5: The output SIR for music separated by online IVA algorithm. The speech is fixed at −50◦

and music moves from B1 to B2 and back to B3 as indicated in Figure 9.3 at a speed of 1◦ per second.

speech, SIR’s for both music and speech decreased. At the end 110 seconds, the music faded

out, the SIR of speech increased and that of music decreased, dramatically. The improved

SIR’s demonstrated that the online IVA algorithm can track the movement of the source

and separate them.

9.6 Results for Noisy IVA

For the noisy case, the signals were mixed using the image method as in the

noiseless case and 10 dB white noise was added to the mixed signals. There was 15 states

for the GMM. A typical learning curve is plotted in Figure 9.6. The GMM was initialized

by training with the first 2 minutes of the signals, and the signals used for testing were 30
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Figure 9.6: The plot of the likelihood value as a function of iterations. The EM algorithm guarantees
the increase of the likelihood. When the source priors are updated, the likelihood has a jump.

Table 9.2: Signal to interference ratio for noisy IVA for various source locations. The source priors were
estimated. The first number in each cell is the SIR of the speech, and the second number is the SIR of
the music.

Source Location D,A D,B D,C D,E D,F D,G

IVA-GMM2 20.8,17.9 11.7,11.7 8.4,8.5 13.5,9.9 19.8,17.0 16.0,19.5

seconds long. There were 250 EM iterations. The convergence rate was slower than in the

noiseless case because of the noise. In general it took 250 iterations, each lasting about 2

seconds. The SIR’s, shown in Table 9.2 were close to those of the noiseless case for both

the speech and music, which demonstrates the effectiveness of the separation. The noise

was effectively reduced and the separated signals sounded noise free. Compared to the
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noiseless case, the separated signals contained no interference because the denoising process

also removed the interference as well as the noise. However, they had more noticeable

reverberation. The reason is that the unmixing matrices was not assumed to be unitary.

The lack of regularization of the unmixing matrices made the algorithm more prone to

local optima. Note that the source estimation of the IVA-GMM was nonlinear, since the

state probability also depended on the observations. For nonlinear estimation, SIR may not

provide a fair comparison. The spectrum compensation is not exact because of the noise,

and as a result, the SIR’s decreased a little compared to the noiseless case.

Acknowledgement: This chapter contains materials in J. Hao, I. Lee, T.-W. Lee

and T. Sejnowski, “Source Separation with Independent Vector Analysis”, to be submitted.
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Conclusions

The goal of this thesis was to propose and develop probabilistic models for speech

enhancement and source separation.

1) Speech enhancement algorithms were based upon approximate Bayesian estima-

tion. These approximations made it possible to use the Gaussian Mixture Model (GMM) in

the log-spectral domain for speech enhancement. The log-spectral domain Laplace method,

which computes the MAP estimator for the log-spectral amplitude, was particularly suc-

cessful. It offered higher SNR’s and smaller recognition error rates. This is consistent with

other evidence that the log-spectrum is appropriate for speech processing. The estima-

tion of the log-spectral amplitude was a good fit to the speech recognizer and significantly

improved its performance, which makes this approach valuable for recognizing the noisy

speech. However, the Laplace method requires iterative optimization and increases the

computational cost. Compared to the Laplace method, the Gaussian approximation with

a closed-form signal estimation is more efficient and performs comparably well. The fast

gain and noise spectrum adaption made this algorithm more flexible. In experiments, the

111
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proposed algorithms demonstrated superior performance over the spectral domain models

and were able to reduce the noise of spectral shape similar to that of the speech.

2) Gaussian scale mixture models (GSMM) were applied to speech signals and two

approximations were developed for signal estimation: The Laplace method and variational

approximation. The GSMM is a more accurate model for speech in the frequency domain

and it models probabilistically the dependency between frequency components and log-

spectra. The advantage of the GSMM is that it models both the FFT coefficients and the

log-spectrum simultaneously. The experimental results shows the algorithms reduced word

recognition error rate and improved the SNR. The FFT coefficients estimation gave higher

SNR, while the log-spectra estimation produced lower word recognition error rate.

3) A novel probabilistic framework for Independent Vector Analysis (IVA) was

proposed. That supported EM algorithms for the noiseless case, the noisy case and the

online learning. Because each source was modeled by a different GMM, it could separate

different type of signals. For the noiseless case, the derived EM algorithm was rigorous

and converged rapidly. It effectively separated speech and music, two different types of

signals. A general weighted likelihood cost function was used to derive an online learning

algorithm for the moving sources. The parameters were updated sequentially using the

single most recent sample. It required no memory of the past samples whose information

had already passed through the online updating rules. This adaptation process tracked

the source and separated them online, which is essential for non-stationary environments.

Further, a noisy IVA algorithm was developed that could separate the signals and reduce

the noise. The performance was evaluated by separation of speech and music. The improved

SIR demonstrated that the algorithm could effectively separate the sources.
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