- Main
A separable model for dynamic networks
Published Web Location
https://doi.org/10.1111/rssb.12014Abstract
Models of dynamic networks - networks that evolve over time - have manifold applications. We develop a discrete-time generative model for social network evolution that inherits the richness and flexibility of the class of exponential-family random graph models. The model - a Separable Temporal ERGM (STERGM) - facilitates separable modeling of the tie duration distributions and the structural dynamics of tie formation. We develop likelihood-based inference for the model, and provide computational algorithms for maximum likelihood estimation. We illustrate the interpretability of the model in analyzing a longitudinal network of friendship ties within a school.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-