Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Postsynaptic assembly induced by neurexin-neuroligin interaction and neurotransmitter

Abstract

Presynaptic and postsynaptic differentiation occurs at axodendritic contacts between CNS neurons. Synaptic adhesion mediated by synaptic cell adhesion molecule (SynCAM) and beta-neurexins/neuroligins triggers presynaptic differentiation. The signals that trigger postsynaptic differentiation are, however, unknown. Here we report that beta-neurexin expressed in nonneuronal cells induced postsynaptic density (PSD)-95 clustering in contacting dendrites of hippocampal neurons. The effect is specific to beta-neurexin and was not observed with other synaptic cell adhesion molecules such as N-cadherin or SynCAM. NMDA receptors, but not alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate receptors (AMPARS), were recruited to this beta-neurexin-induced PSD-95 scaffold. Remarkably, AMPARs were inserted into this scaffold upon glutamate application or expression of a constitutively active form of calmodulin kinase II in neurons. Expression of a dominant-negative neuroligin-1 in cultured neurons markedly reduced the sizes and densities of PSD-95 puncta and AMPAR clusters. In addition, excitatory, but not inhibitory, synaptic functions were impaired in these neurons, confirming that PSD-95/neuroligin-1 interaction is involved in postsynaptic assembly at glutamatergic synapses. These results demonstrate that postsynaptic assembly of the glutamatergic synapse may be initiated by presynaptic beta-neurexin and that glutamate release also is required for maturation of synapses.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View