- Main
Computational Prediction of the Binding Pose of Metal-Binding Pharmacophores
Published Web Location
https://doi.org/10.1021/acsmedchemlett.1c00584Abstract
Computational modeling of inhibitors for metalloenzymes in virtual drug development campaigns has proven challenging. To overcome this limitation, a technique for predicting the binding pose of metal-binding pharmacophores (MBPs) is presented. Using a combination of density functional theory (DFT) calculations and docking using a genetic algorithm, inhibitor binding was evaluated in silico and compared with inhibitor-enzyme cocrystal structures. The predicted binding poses were found to be consistent with the cocrystal structures. The computational strategy presented represents a useful tool for predicting metalloenzyme-MBP interactions.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-