Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Theta Phase Synchrony Is Sensitive to Corollary Discharge Abnormalities in Early Illness Schizophrenia but Not in the Psychosis Risk Syndrome

Abstract

Background

Prior studies have shown that the auditory N1 event-related potential component elicited by self-generated vocalizations is reduced relative to played back vocalizations, putatively reflecting a corollary discharge mechanism. Schizophrenia patients and psychosis risk syndrome (PRS) youth show deficient N1 suppression during vocalization, consistent with corollary discharge dysfunction. Because N1 is an admixture of theta (4-7 Hz) power and phase synchrony, we examined their contributions to N1 suppression during vocalization, as well as their sensitivity, relative to N1, to corollary discharge dysfunction in schizophrenia and PRS individuals.

Methods

Theta phase and power values were extracted from electroencephalography data acquired from PRS youth (n = 71), early illness schizophrenia patients (ESZ; n = 84), and healthy controls (HCs; n = 103) as they said "ah" (Talk) and then listened to the playback of their vocalizations (Listen). A principal component analysis extracted theta intertrial coherence (ITC; phase consistency) and event-related spectral power, peaking in the N1 latency range. Talk-Listen suppression scores were analyzed.

Results

Talk-Listen suppression was greater for theta ITC (Cohen's d = 1.46) than for N1 in HC (d = 0.63). Both were deficient in ESZ, but only N1 suppression was deficient in PRS. When deprived of variance shared with theta ITC suppression, N1 suppression no longer differentiated ESZ and PRS individuals from HC. Deficits in theta ITC suppression were correlated with delusions (P = .007) in ESZ. Theta power suppression did not differentiate groups.

Conclusions

Theta ITC-suppression during vocalization is a more sensitive index of corollary discharge-mediated auditory cortical suppression than N1 suppression and is more sensitive to corollary discharge dysfunction in ESZ than in PRS individuals.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View