Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Direct experimental evidence for the existence, structural basis and function of astral forces during anaphase B in vivo

Abstract

The existence, structural basis and function of astral forces that are active during anaphase B in the fungus, Nectria haematococca, were revealed by experiments performed on living cells. When one of the two asters of a mitotic apparatus was damaged, the entire mitotic apparatus migrated rapidly in the direction of the opposing astral forces, showing that the force that accelerated spindle pole body separation in earlier experiments is located in the asters. When a strong solution of the antimicrotubule drug, MBC, was applied at anaphase A, tubulin immunocytochemistry showed that both astral and spindle microtubules were destroyed completely in less than a minute. As a result, separation of the spindle pole bodies during anaphase B almost stopped. By contrast, disrupting only the spindle microtubules with a laser microbeam increased the rate of spindle pole body separation more than fourfold. Taken together, these two experiments show that the astral forces are microtubule-dependent. When only one of the two or three bundles of spindle microtubules was broken at very early anaphase B, most such diminished spindles elongated at a normal rate, whereas others elongated at an increased rate. This result suggests that only a critical mass or number of spindle microtubules needs be present for the rate of spindle elongation to be fully governed, and that astral forces can accelerate the elongation of a weakened or diminished spindle.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View