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Abstract

Solid-State Nuclear Magnetic Resonance Studies of Cross Polarization

from Quadrupolar Nuclei

by

Susan Margaret De Paul

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor Alexander Pines, Chair

The development of solid-state Nuclear Magnetic Resonance (NMR) has, to a

large extent, focused on using spin-1/2 nuclei as probes to investigate molecular structure

and dynamics. For such nuclei, the technique of cross polarization is well-established as a

method for sensitivity enhancement. However, over two-thirds of the nuclei in the

periodic table have a spin-quantum number greater than one-half and are known as

quadrupolar nuclei. Such nuclei are fundamental constituents of many inorganic materials

including minerals, zeolites, glasses, and gels. It is, therefore, of interest to explore the

extent to which polarization can be transferred from quadrupolar nuclei.

In this dissertation, solid-state NMR experiments involving cross polarization

from quadrupolar nuclei to spin-1/2 nuclei under magic-angle spinning (MAS) conditions

are investigated in detail. The behavior of the central transition of a quadrupolar nucleus

under a low-power radiofrequency spin-lock field is examined both experimentally and

with numerical simulations. Complications in choosing the matching spin-lock field

strength for the spin- 1/2 nucleus are discussed. The dynamics of the cross-polarization

process are characterized in a model compound (low albite) and a protocol for optimizing

the polarization-transfer efficiency is presented. Significant enhancement of 29Si NMR

sensitivity by using 27A1-to-29Si and 23Na-to-29Si cross polarization is demonstrated in

several inorganic compounds.

This sensitivity enhancement permits otherwise impractical two-dimensional

NMR experiments to be performed. Cross polarization from quadrupolar nuclei is

incorporated into experiments designed to correlate the isotropic and anisotropic parts of

the chemical-shielding tensor. Several different pulse sequences for performing such

1

,< ,,.
~,>.., . .., ‘f.. ,.. .’.:.’. ,., ‘S’,-:..,.



.—— 2

correlations under magic-angle spinning conditions are analyzed and compared. Cross

polarization from quadrupokir nuclei ‘is also ‘;ombined with the recently-developed

Multiple-Quantum Magic-Angle Spinning (MQMAS) experiment to create a new

technique for measuring heteronuclear correlation spectra.

In addition, the motion of cyclopentadienyl rings in four organometallic solids is

studied by variable-temperature NMR, and two-dimensional exchange spectroscopy is

used to demonstrate that sigmatropic rearrangements occur in the

monohaptocyclopentadienyl groups of Hf(q5-C5H5)2(q *-C5H5)2. An experiment which “

demonstrates that a rapid mechanical sample reorientation leads to a time reversal of

13C spins is also presented.radio-frequency driven spin diffusion among
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Chapter 1: Introduction

This thesis primarily describes studies of the transfer of polarization from

quadrupolar nuclei to spin-1/2 nuclei in high-field, solid-state Nuclear Magnetic

Resonance (NMR) spectroscopy. In the first chapter, the underlying quantum-mechanical

theory will be reviewed, and the manifestation of physical interactions in NMR spectra

will be discussed. In Chapter 2, an example of the use of conventional solid-state NMR

spectroscopy to characterize chemically interesting processes will be presented. Chapter 3

will describe experiments, simulations, and theory pertaining to the spin locking of

quadrupolar nuclei in rotating samples. The information obtained from these studies can

be used to optimize cross-polarization experiments as will be shown in Chapter 4.

Applications of this technique will be demonstrated in Chapters 5 and 6. Finally, a proof-

of-principle experiment which demonstrates that “spin diffusion” can be refocused by

macroscopic sample reorientation will be presented in Chapter 7.

1.1 Quantum Fundamentals

One of the most exciting aspects of NMR from a spectroscopic point of view is the

success of quantum mechanics in describing the behavior of nuclear spins in a magnetic

field. Quantum effects can be seen more clearly in NMR than in many other branches of

physical chemistry, and the effects of complicated combinations of pulses and rotations

can be straightforwardly simulated. In this section, some basic ideas from quantum

mechanics will be reviewed. The description provided in this thesis is neither self-

contained nor complete; in particular, a knowledge of Dirac notation is assumed. In-depth

treatments of the topics presented in this section can be found in introductory books on

quantum mechanics 1’ZJJin monographs on NMR4’S’617$8’9and in previous theses from this

group. 10’1]
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1.1.1 Density Matrix

In quantum mechanics, a particle is described by a wave function or state vector,

lY(t)). Although the wave function itself does not have a simple physical interpretation, it

contains all of the information necessary to describe the particle. The wave function

changes with time according to the Schrodinger equation

ifi-$Y(t)) = X(t) I!P(t)) (1.1)

where M(t) is the Hamiltonian operator, which describes the energy’ of the system.

Although, in general, the solution to the Schrodinger equation can be non-trivial,

the problem is greatly simplified for the case of a time-independent Hamiltonian. In such

a case, straightforward integration of Equation ( 1.1) gives

lY?(t))= e-iM’hlY(0)). (1.2)

It is possible to find a set of orthonormal state vectors, { Iqi)} , which are eigenvectors of

the time-independent Hamiltonian. These state vectors obey the equation

fflqi)= ‘Eilqi), (1.3)

where the terms, {Ei } , are known as the eigenvalues of the Hamiltonian and correspond

to the allowed energy levels for the particle.

A quantum-mechanical projection operator can be defined as follows

(1 .4)

When this operator is applied to a state IT(t)), it gives the orthogonal projection of IT(t))

onto lqi}. Using this projection operator, one can expand an arbitrary state, lY(t)), in

terms of the basis of eigenvectors of the Harniltonian

Iy(t)) = ~l~j)(~jly(t)) = ~cj(t)lvj) .
i i

(1 .5)



This procedure is analogous to the more familiar case of describing a vector in Cartesian

space by its projections onto the orthogonal x, y, and z axes.

While the above description of a system in terms of state vectors works well for

the case of a single particle, it is not well-suited to describing collections of particles. In

NMR, however, one always records the signal from a large number of spins. It is,

therefore, desirable to have a formalism that explicitly takes into account the statistical

nature of the system. Such a formalism is provided by the density matrix.2’4’12

The density operator is defined as

P(t) = ~pklYk(t))(yk(t)l , - (1.6)
k

where pk is the probability that the entire system is in a state ]Yk(t)). Note the functional

similarity between Equation (1.6) and the projection operator of Equation (1.4). In this

case, however, the state that is being projected onto is not necessarily an eigenstate of the

Ha’miltonian but is the linear superposition of eigenstates that describes the current state of

the system.

If one expands lYk(t)) in the eigenbasis of the Hamiltonian (see Equation (1.5)),

Equation (1.6) becomes

Explicitly taking the ensemble average gives

p(t) = ~,~{ci(t)cj*(t) l~i)(vjl -
ij

(1.7)

(1.8)

The statistical nature of the density operator is clearly evident in Equations (1.7) and ( 1.8).

The matrix elements of p(t) in the eigenbasis of the Hamiltonian can be found

using Equation (1.8). The diagonal elements

.... .. .. . y.. .,... .,,. ~%,. /-.



(qmlP(019m) = ~~ci(t)cj*(t)(9~lVi) (9j19~)
ij’

~zY{ci(t)cj*(t)5im5jm
ij

(1 .9)

cm(t) 2

express the population of a given state [(pm),while the off-diagonal elements

~~ci(t)cj*(t)(9m19i)(Vj19~)
ij

Z~ci(t)cj*(t)airn3jn -
(1.10)

,j

cm(t) en*(t)

express a “coherence,” or interference, between two eigenstates Iqm) and Iqn). The

concept of a coherence will be discussed in more detail in Section 1.5.1.

The time evolution of the density operator is described by the Liouville-von-

Neumann equation

ih~p(t) = [X(t) ,p(t)] (1.11)

which can be derived from Equations (1.6) and (1.1). Equation (1.11) can be solved

analytically to yield

p(t) = u(t)p(o)u~(t)

where the propagator U(t) is defined as

f{1-;X@’)dt’

U(t)=Te 0 , (1.13)

and the Dyson time-ordering operator, T, specifies the order of evaluation of operators. I~’*4

(1.12)



The form of the

condition of the system.

initial density matrix, p(0), in Equation (1.12) depends on the

For a general system in thermal equilibrium, it is given by

-Wk~T

p(o) = e ~

where X is the Hamiltonian describing the energy

Boltzmann constant, and Z is the partition function

-WkBT
Z= Tr{e }.

(1.14)

levels of the system, kB is the

(1.15)

Again, the statistical nature of the density operator is readily apparent. In NMR, the

energy level spacings are typically very small compared to the temperature at which the

experiments are performed. Even for protons with a resonance frequency of 600 MHz, the

Larmor splitting is only hv~ = 3.97x 10-25J while the room-temperature

is k~T = 4.11 x10-z’ J. This permits one to expand Equation (1.15) as

thermal energy

(1.16)

where 1 is the identity operator. Since the identity operator can neither evolve with time

nor be detected in an NMR experiment, it is customarily dropped from calculations.

Expectation values can be calculated by using density matrices. Generalizing the

expectation value from the Schrodinger representation to an ensemble of spins

k

and expanding the wave functions over the basis Iqi) (see Equation (1.5)) gives

(1.17)

(1.18)

.+ .>



Yet the ensemble-averaged term in Equation (1.18) is simply an off-diagonal element of

tie density matrix (see Equation (1. 10)). Equation (1. 18) therefore becomes

(A) = ~~(WilP(t)19j)(9jlA19i)
ij

= ~(9ilP(t)A19i)
i

= Tr {p(t) A}.

Equations (1. 19) and (1. 11) are used frequently in

(1.19)

NMR to calculate the observable

magnetization resulting from the application of various Hamiltonians.

1.1.2 Interaction” Representation

The behavior of a spin system under rf pulses and sample rotation can be

determined by solving the Liouville-von-Neumann equation (Equation (1. 11)). Often,

however, the problem can be considerably simplified by using the interaction..

representation to change the frame of reference. This is routinely done in NMR in the case

of the rotating-frame transformation, in which the reference frame is shifted from the

stationary laboratory frame to a frame that rotates with the Larrnor frequency (see Section

1.2.2). In such a frame, the formerly processing magnetization will appear stationary, and

the effects of rf pulses become particularly simple to describe. ~

The interaction representation is described in several books on NMR.5’8’15It can be.

expressed in two slightly different formulations, both of which will be presented below.

Transformation to an interaction representation is possible when a Hamiltonian

contains both a time-independent term and a time-dependent term

X = tio+xl(t). (1 .20)

It is then possible to define a unitary operator, R, as

R = e-ix)t’fi. (1.21)



With this operator, one can perform a similarity transformation on the density matrix to

create a new density matrix in the interaction frame

pi(t) = Rtp(t)R . (1 .22)

Here, use has been made of the fact that for a unitary operator

Rt = R-l.

This ieads to the property

Rt R =R-lR=l,

which will be useful in the derivations which follow.

The interaction Hamiltonian is commonly defined as

~(t) = RtM1(t)R

or as

fl(t) = Rtfi(t)R - ihRt$.

(1.23)

(1.24)

(1.25)

( 1.26)

Note that inclusion of the term –ihRt (dR/dt) in Equation (1.26) may seem somewhat

arbitrary or unphysical. However, defining the Hamiltonian in this way allows a

Liouville-von-Neumann equation to be used to describe the evolution of the density

matrix in the interaction frame as will be shown below. The equivalence of Equations

(1 .25) and (1.26) can be seen by substituting Equation (1.20) into Equation (1.26) and

using both the properties of unitary operators (Equation (1.24)) and the fact that a given

operator commutes with a function of that operator2

.. ., ,.Z.,., ,. ./ .

.,

~

# ::, - >772”... .,.,



(1 .27)

= ~+ RtZ1(t)R - ~R*R

= Rty@R.

With the interaction Hamiltonian defined according to Equations (1.25) and (1.26),

the density matrix in the interaction frame cart be described by a Liouville-von-Neumann

equation

ifi~tpl(t) = [d (t) ,pl(t)] . (1.28)

Equation (1.28) is the same as”( 1.11) as can be seen by direct substitution of Equations

(1.22) and (1.25) into Equation (1.28). The left-hand side of Equation (1 .28) becomes

ifi-$pI(t) =

=

=

=

ifi~ (Rtp(t)R)

ifidRt dRdp(t)R + ifiR~p(t)~
~P(t)R + ihR~———dt

()

(1 .29)
i~o ~

()

–iHo
ill ~R p(t)R + ifiRt~R + ihRtp(t) ~R

ifiRt~R – R~[flo,p(t)]R.

Similarly, the right-hand side of Equation (1 .28) becomes

[~ (t) ,pr(t)] = [RtXl(t)R,Rtp(t)R]

= RtX1(t)RRtp(t)R – Rtp(t)RRtfll(t)R

= Rt [til(t),p(t)lR.

8
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Equating the two and operating from the left by R and from the right by Rt gives

ihdp(t)
~ - [~>p(t)l = [Y@P(ol

ihdp(t)
— = [flo + ti,o)jp(ol

dt

(1.31)

which is the original Liouville-von-Neumann equation (Equation ( 1.11)).

Note that the above derivations were rigorous and did not require any assumptions

about the relative sizes of XO and til (t). The only requirement was that X. be time-

independent. Even this requirement need not be satisfied if Equation (1.21) is generalized

to a form similar to that in Equation (1.13) although such cases will not be considered in

this thesis. In many applications of this transformation, however, X. will be the largest

part of the Hamiltonian. In such cases, it is common practice to divide Xl(t) into a term

which commutes with fio, ~(t), and a term which does not commute with ?$, <c(t),

as follows

~~(o = Yqt) + <c(t) . (1.32)

The Hamiltonian in the interaction frame then becomes

Y/(t) = <(t)+ Rt<c(t)R . (1.33)

At this point, a first-order perturbative approximation known as the secular approximation

is commonly made, and it is assumed that the off-diagonal portions of the Hamiltonian are

small enough relative to the diagonal elements that they can be ignored. The Hamiltonian

is then truncated so that only the term <(t) remains .5 This truncation is done in addition

to the change to the interaction representation and is not a direct mathematical

consequence of the transformation.

Transformation to a different frame will change the time dependence of the

Hamiltonian. In the case of the rotating-frame transformation (see Section 1.2.2), the

transformation eliminates the time-dependence in the rf term of the lab-frame

Hamiltonian. However, transformation to an interaction frame can also introduce new

.. ,- ,.,..... , -. . , .,, .,.-z.-,. . ... ..., .
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time dependence. This is precisely what happens to the terms in the original Hamiltonian

that do not commute with 7$ when the rotating-frame transformation is carried out.

Time-independent terms which commute with X. remain time-independent, but the non-

commuting terms pick up an additional time dependence (see Equation (1.33)), which

often provides further justification for making the secular approximation.

1.1.3 Wigner Rotation Matrices

In addition to being able to change the motional reference frame (by using the

interaction representation), it is also convenient to be able to change the coordinate system

to facilitate the solution of a problem. This can easily be done when spherical tensors are

used. All of the physical interactions governing NMR spectra can be written in terms of

sums of products of two second-rank tensors, one concerned with spin variables and one

concerned with spatial variables.G*7 These tensors can then be rotated into the desired

frame of reference by a unitary transformation which can be performed on each

component

(1.34)

where Al,n is the n-th component of a tensor of rank 1. The unitary operator, UEuler t

represents a series of three consecutive rotations about different axes by the angles

(@Y).l,7J6,17J8 These angles are known as the Euler angles. Several different

conventions are used in the literature, but the one we will uselG is depicted in Figure 1.1.

The results of applying the unitary transformation of Equation (1.34) to each

component of a tensor can be represented by using Wigner rotation matrices

R , * = ~ D~l~(~> p, Y)A,,n. (1 .35)*
n =- 1’

Here, Rl,m is a tensor component in the new frame; { Al, n} are the components in the old

frame; and D(’)n,~((x, ~, y) is a Wigner rotation matrix. The Wigner rotation matrices can

be simplified further by writing

10



D~~~(cx, ~, y) = e‘i (“a+ ‘Y) d;:.@

where d(’)n,m(~) is known as a reduced Wigner rotation matrix

according tolc

d~~~(fl) = (1, nle ‘ieLyll, m),

(1.36)

element and is defined

(1.37)

Table 1.1 lists the reduced Wigner rotation matrix elements for 1=2. Also of interest are

the matrix elements with n=m=O which can be shown to simplify to*c

z

x

(cc, p, y)
(x,Y, z)—E (x,y,z)

Figure 1.1- Eulerangledefinitions. The firstrotationis by an angleCYabout the Z axis of
the original coordinatesystem. This changes the positions of the X and Y axes. The
second rotation is by the angle 13about the newly-rotatedY axis, and it changes the
positionsof the X andZ axes. The third rotationis by the angley about the newly-rotated
Z axis. The finalpositionsof the axesare givenby the labelsx, y, and z.

(1.38)

11
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Table 1.1- ReducedWlgnerrotationmatrixelementsdj~~(~).

where the Pl(cosfi) terms are known as Legendre polynomials. The relevant Legendre

polynomials for NMR are the zeroth-, second-, and fourth- rank terms which are given by

Po(cosp) = 1, (1.39)

P2(COSp) = ; (3cos2p - 1) , (1 .40)

and

P4(COSp) = ; (35cos4p - 3ocos2p + 3) . (1.41)

The Principal-Axis System (PAS) for a given interaction is the frame of reference

in which the space tensor is diagonal. It is, therefore, a convenient representation to use

when describing individual crystallite, but in general it does not correspond to what is

observed in the laboratory. The Wigner rotation matrices are used in NMR to relate the

orientation of a given crystallite to the lab frame or to the axis about which the

macroscopic sample is rotated (see Section 1.4). Many examples of their use will be seen

throughout this thesis.

12



1.1.4 Perturbation Theory

The derivation of non-degenerate, time-independent perturbation theory can be

found in any textbook on quantum mechanics 1>2and only the key results will be

summarized below.

Perturbation theory can be applied to solve the time-independent Schrodinger

equation (Equation (1.3)) when the Hamiltonian has the form

H= Ho+-v (1 .42)

where the magnitude of V is very small compared to that of %$ and where the

Schrodinger equation for flo can be solved exactly

~lj) = Efo)1.0 (1.43)

The eigenvalues of the full Hamiltonian (Equation (1.42)) can then be shown to be

approximated by

E. = E(o) +E\l) +E(2) +
J J J J

. . .

where the first-order correction to the energy is given by

E(l)

J
= (jlVlj)

and the second-order correction to the energy is given by

E:2) =
x

(jlVlk)(klVlj)
J (o)

k#j Ej -E~O) ~

(1 .44)

(1 .45)

( 1.46)

For many cases in NMR, only first-order corrections need to be taken into account

to describe the observed spectrum. However, for the case of the quadrupolar interaction

(see Section 1.2.5), second-order terms need to be explicitly considered.

. . .... . ... .. . .... . .7 .3- 7,.-..
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For time-dependent interactions, other forms of perturbation theory need to be

considered. These include Fermi’s Golden Rule,z Average-Harniltonian Theory (AHT),4$C

and Floquet theory. 19t20,21i22The latter two are suitable only for periodic Hamiltonians, a

condition which often occurs in NMR. Note that the zeroth-order average Hamiltonian is

given by

where ~ is period of the cycle. This is equivalent to the result from

(1 .47)

first-order static

perturbation theory, and the two

thesis.

1.2 NMR Hamiltonians

descriptions will be used interchangeably throughout this

While the concepts presented in Section 1.1 are powerful tools for calculating the

quantum-mechanical behavior of a system, they require a knowledge of the Hamiltonians

that govern the physical behavior of the system. In this section, a brief description is

given of some important interactions in solid-state NMR and the corresponding

Hamiltonians. The Hamiltonians are expressed in terms of sums of products of spherical

tensors in a manner similar to that described by Haeberlen.c)7*11

1.2.1 Spin Operators and the Zeeman Interaction

By the laws of angular momentum, a nucleus with a spin-quantum number I has

(21+1) eigenstates. These states are labeled by the quantum number m where m has one of

the values {-I, -1+1,...,1-1,1}. In the presence of an externally applied static magnetic field,

these states become non-degenerate due to the interaction of the spin with the magnetic

field. This interaction is known as the Zeeman interaction and can be described by the

following Harniltonian

~ = -fiyBoIZ ( 1.48)

14



where y is the isotope-dependent gyromagnetic ratio and B. is the strength of the applied

magnetic field. Here we have used the usual convention that the direction of the magnetic

field defines the z-axis. The operator, IZ, is the operator for the z-component of the angular

momentum and has eigenvalues and eigenvectors given by

IZII, m) = mlI, m). (1 .49)

Since the Zeeman Hamiltonian is by far the largest Hamiltonian in all cases discussed in

this thesis, its eigenvectors can be used as a basis set, and all other interactions can be

treated as perturbations to the Zeeman Hamiltonian (see Section 1.1.4). By first-order,

time-dependent perturbation theory,4 it is then possible to show that the selection rule for

magnetic resonance transitions is Amd 1 (although “forbidden” transitions can be excited

to some extent as predicted by higher-order terms in the perturbation expansion). Thus,

the NMR transition frequency is oy=-yBo and is known as the Larmor frequency. It

corresponds to the frequency of precession of the spins about the B. field.

The transverse angular-momentum operators, IX and $ are important in NMR

since all observable magnetization is proportional to them. They are not diagonal in this

basis, however, and their non-zero matrix elements are given by

(I, mlIXII, m’) = ~{41(1+ 1)-m’ (m’+ l)&m~+l

+~1(1+1) –m’(m’–l)6~, m~_l}

and

(I, mlIYII, m’) = ~{~1(1 +1) -m’(m’ +1) bm,m,+l

— ~1(1+1) -m’(m’–l)6~, ~~_l}

Often it is convenient to use linear combinations of IXand IYas follows

1+ = IX+ iIY

(1.50)

(1.51)

(1.52)

15
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I- = IX–iIY. (1.53)

The operators defined in Equations (1.52) and (1.53) are known as raising and lowering

operators, respectively, since they change the magnetic quantum number by one

1+11,m) =

I-II, m) =

~1(1+1) -m(rn+l)lI, m+l) (1.54)

~1(1+1) -m(m–l)lI, m-1). (1.55)

The spherical tensor operators that will be used in Sections 1.2.3, 1.2.4, and 1.2.5 can

easily be expressed in terms of the operators 1+, L, and IZ

1.2.2 Rf Irradiation, Rotating Frame, and Bloch Equations

Transitions between the eigenstates of the Zeeman Hamiltonian can be induced by

application of a linearly polarized rf field Perpendicular to the static B. field. Such a field

can be described by the following Hamiltonian

HRF = -fi2yIBlIcos (coCt + $) IX ( 1.56)

where 2B 11 is the strength of the applied rf field, and @ is an arbitrary phase. The

frequency COCis the carrier frequency of the k, to induce a transition, COCmust be nearly

resonant with the Larmor frequency of the I spins (~). The rf irradiation can be

decomposed into the sum of two circularly polarized components rotating at frequencies

+coc and -mc, leading to

(1 .57)

which describes the combined effects of the Zeeman and rf fields; note that

%1 = –’YIB~~. Only the component of the rf field that rotates in the same direction as the

processing moment will induce transitions between the Zeeman levels. To see explicitly

how the rf irradiation affects the spins, it is convenient to switch to an interaction

16



representation in which this component is stationary. This can be accomplished by using
-i6@z

the transformation R = e along with Equation (1.26). Equation (1.57) then

becomes

~= h(CO~-COc)IZ+hOII[ (IXcos$-IYsin$)
(1.58)

+ (IXCOS(2(I)Ct + $) –IYsin (2coCt +$)).

Note that the coordinate system is right-handed with respect to rotations about q ~(which

points in the opposite direction from the magnetic field for spins with a positive

gyromagnetic ratio) .4 Neglecting the terms which oscillate with 2COCleaves a stationary

field that the magnetization can precess about. When ~=mc (on-resonance irradiation),

this field lies in the xy-plane.

This frame of reference is known as the “rotating frame,” and it is commonly used

to describe NMR experiments. It is more than a mathematical convenience: the mixing

process in the receiver of an NMR spectrometer subtracts out the carrier frequency so that

the recorded signal corresponds.to the magnetization in the xy-plane of the rotating frame.

All Hamiltonians in this thesis will be written in this rotating frame. Note that there is

another common usage of the words “rotating frame,” however, which arises in the

context of spin-locked magnetization. Experiments in which the relevant axis of

quantization is defined by the rf field rather than the Zeeman field are often said to take

place in the “rotating frame.”7 With the exception of the term “rotating-frame relaxation”

(TIP), only the former definition will be used in this thesis.

So far, the treatment of NMR in this thesis has been entirely quantum-mechanical.

However, a classical picture of magnetization vectors processing about magnetic fields is

also useful. The classical viewpoint is best summarized by the Bloch equations, which are

written in the rotating frame as follows

, , ,---,-. . 7> - -,. . :.- ?,-.. >-.-/-,.- - .,



dMX M

dt
— = y (MYBZ-MZBY) - #

2

dMY M

dt
— = y (MZBX - MXBZ) - ~y

dMZ (MZ-2MO)
— = y (MXBY- MYBX) - ~

dt 1

(1.59)

where M. is the equilibrium magnetization; (Bx, BY BZ) are the components of the

magnetic field in the rotating frame; T1 is the longitudinal relaxation time; and T2 is the

transverse relaxation time. The theory of relaxation has been extensively developed but

is beyond the scope of this thesis. From the point of view of the experiments discussed

below, the values of TI and T2 will appear most prominently as practical constraints which

influence the choice of pulse sequence for a given application.

1.2.3 Chemical-Shielding Interaction

The chemical shift reflects the magnetic shielding of a nucleus by neighboring

electrons. Like the Zeeman interaction, the chemical shift is proportional to the strength

of the applied magnetic field. Both diamagnetic and paramagnetic effects contribute to the

chemical shift, which is an orientation-dependent quantity. In solution-state NMR

spectroscopy, rapid molecular tumbling averages out this orientation-dependence and

produces a narrow line at a position, known as the isotropic chemical shift, which reflects,

the average electronic environment of the nucleus. In the spectra of powdered solid

samples, however, individual crystallite have different orientations with respect to B.

and, consequently, slightly different resonance frequencies.

The Hamiltonian for the full chemical-shielding interaction in the laborato~ frame

is given by

(1.60)

18



Because this Harniltonian is symmetric, no 1=1 terms are present in the sum.l’lb This is

generally true for NMR Hamiltonians.G The spatial terms in Equation (1.60) can be

calculated using Equation (1.35)

R
Cs
, _m = ~ D&(cxcs, PCS, ycs)p:~ (1.61)

n=-1

where the spherical-tensor components in the principal-axis system are given by

(1.62)

The term qcs is known as the asymmetry parameter and represents the deviation of the

chemical-shielding interaction from cylindrical symmetry. The term 8CS is known as the

anisotropy parameter. The spin part can be expressed asc

T
Cs
0,0 = IZBO

T
Cs

I
~1 B

2’0= 3.0
(1.63)

T
Cs
2.*2 = o.

Several conventions are used in the literature for describing the principal values of

the chemical-shielding anisotropy (CSA). The one used in Equation (1.62) is

19
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This has the effect that ?lCs will always be a positive number between zero and one.

However, whether the most downfield shift is 6ZZor GXXdepends on which side of ~i~o the

term on is on.23 An alternate convention has therefore been defined as follows .

6 ~~ 2 622 2 CT33. (1.65)

Using this convention, all is always the most downfield term. The definition of ?lCs now

depends on the relative magnitudes of Ial ~– ~i~ol and 1~33– ~i~ol “24 If 1~11– ~i~ol >

033 – Oiso , the following identifications can be made: 611=022, ozz=~yy, and %=%X.

If 1033_ ~i~Ol s all–ci~~ > the proper correspondence is: a33=ozZ, 622=ayy, and

al I=(sXx.

We will use the convention of Equation (1.64) when describing any theoretical

aspects of chemical shifts, but in Chapter 5 measurements will be reported using the

convention of Equation (1.65), as is customary.

Because the chemical-shielding anisotropy is on the order of several kHz, it can be

considered as a perturbation to the Zeeman Hamiltonian. It is, therefore, useful to

transform into a frame rotating with the Larmor frequency (see Section 1.2.2). Ignoring

all oscillating

proportional to

terms (i.e. - making the secular approximation) leaves only terms

the spin tensors T~~ and T~~

HCs = fiy {T~OD~~&cs, ~cs> 7CS)P%

+T~O ~ D;~~(~cs> ~cs> Ycs)P;~ }
~=-2

(1.66)

which simplifies to

H
{[

= fi~BOIz ~i~o
+ ~cs (3cos2pcs – 1) q . 2 cscos2acs

Cs 2
+Zsm ~ 1}. (1.67)

Note that the chemical-shielding Hamiltonian is orientation-dependent.
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1.2.4 Dipolar Interaction

Another important interaction in solid-state NMR is the through-space interaction

between the magnetic moments of two nuclei. This interaction can be described by the

following Hamiltonian

(1.68)

D
where the R1 _m are described in an analogous way to the chemical-shift case (see

Equation (1.6;)) and the spatial components in their PAS are given by

while the spin components have. the form

T~o = -#31jZI~Z-Ij ‘“i]

(1.69)

(1 .70)

Since p: o equals zero, there is no isotropic dipolar coupling. Also, the

interaction is cylindrically symmetric about the internuclear vector (qD=O). Like the

chemical shift, the strength of the dipolar interaction is small (tens of kHz) relative to the

Zeeman interaction, allowing first-order perturbation theory to be applied. Assuming that

the two spins are of the same type (homonuclear), one can make the secular approximation

which will retain only the terms proportional to T; o



‘iD=-fi{(~)~}(3c0s~D-’)[31dk.-~oi](1.71)

j

where the term in curly brackets is the dipolar-coupling constant, djk (in, units of

frequency). If the two spins are of different types, then not even T? ~ will commute with

the Zeeman term. However, it is possible to rewrite T; ~ as a sum of a commuting and a

non-commuting term (see Equation (1.32))

T:. = ~
[& 21jzIkz - ~ (Ij+Ik. + lj-l~+)] - (1 .72)

The first term on the right commutes with the Zeeman Hamiltonian even for unlike spins.

The second term is often called the “flip-flop” term since it corresponds to an exchange of

magnetization between two spins. It is not energy-conserving for unlike spins (unless

special pulse sequences are applied) and, therefore, must be dropped from the

Hamiltonian when the secular approximation is made in hetercmuclear spin systems.

1.2.5 Quadrupolar Interaction

In addition to the magnetic interactions described in the previous sections,

electrostatic interactions can also influence the fine structure of an NMR spectrum. The

interaction of a nucleus with a surrounding local electric-field gradient is known as the

quadrupolar interaction. The strength of this interaction can be as large as hundreds of

MHz, making it comparable to or greater than the Zeeman interaction. In such cases, the

quadrupolar Hamiltonian can provide the axis of quantization, and rf-irradiation is used to

excite transitions between the various levels. This type of spectroscopy is known as

Nuclear Quadruple Resonance (NQR) spectroscopy. It will not be discussed further in

this thesis, but an excellent introduction to the topic can be found in the monograph of Das

and Hahn.2s

We will be concerned with the case where the quadrupolar interaction is small

enough to be treated as a perturbation to the Zeeman splitting although it will typically be

large enough that second-order terms must be explicitly considered. Because experiments

involving quadrupolar nuclei comprise the majority of this thesis, the physical basis for

22



the quadrupolar interaction will be outlined following the derivation of Cohen and

Reif,5*10*2band then the quantum-mechanical Hamiltonian will be presented. Finally, some

of the issues relating to excitation and observation of the central transition of an odd-half-

integer quadrupolar nucleus will be discussed.27

The classical energy of interaction of a charge density, p(r), with an electrostatic

potential, V(r), can be expressed as

E = ~d3r p(r)V(r) (1.73)

If the potential is expanded about the center of mass of the nucleus, Equation (1.73)

becomes

(1 .74)

where the Xa are Cartesian components. The first term on the right-hand side Equation

(1.74) is the interaction of a point-charge nucleus (an electric monopole) with a constant

potential; it will not affect the NMR spectrum. 26 The second term, an electric-dipole term,

vanishes because it has odd parity. * But the third term, the electric quadrupolar

interaction, can be non-zero. It is the product of two tensors: a quadruple moment with

components

Qap’ = \d3rp(r)xaxp

and an electric field gradient with components

v [)d2V
a~ =

‘xadx~ ,=O.

Higher-order terms in the multipole expansion can generally be ignored.

(1.75)

(1 .76)

-.---r., . . ,.,,,. .
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The most convenient principal-axis system for the quadrupolar interaction will be

the one in which the electric-field gradient- @FG) is diagon~. It will then have three

components, but due to Laplace’s equation

Vv = o = Vxx+vyy+vzz, (1.77)

only two independent parameters can be defined. These parameters are the strength of the

EFG in units of electric charge

6Q= eq = VZZ (1 .78)

and a parameter expressing the deviation of the electric field from cylindrical symmetry

v – Vxx
nQ= ‘;

Zz

where VZZ 2 VYY 2 VXX .

It will prove convenient to rewrite the quadrupole-moment tensor as

(1 .79)

(1.80)

which makes it traceless. Substituting Equations (1.75), (1.76), and (1.80) into Equation

(1.74) and making use of Equation (1 .77) gives

(1.81)

So far, no quantum-mechanical aspects have been introduced. However, nuclear

spin is intrinsically quantum-mechanical; it is, therefore, necessary to invoke a

correspondence principle to rewrite the moment tensor in terms of spin angular

momentum operators.

According to the Wigner-Eckhart theorem, 26all matrix elements of a tensor of a

given rank, k, are proportional to each other
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(E, L dTknk, 1’, m’) = C (I, I’, m, m’, k, n) (E, IIT~lE, I’) (1.82)

where n is a tensor component; E is a generic quantum number; and C is a Clebsch-Gordan

coefficient that is independent of the nature of the interaction. The Wigner-Eckhart

theorem implies that the components of two irreducible tensors of the same rank will be

related by a constant of proportionality

k L mlQknla1’,m’)
= {t f’1$%}(E, L mlTknlE, I’, m’) (1.83)

where the constant of proportionality is given in curly brackets: Applying this to Equation

(1.80) gives

( (Ia$ + J-&)
(E, L mlQapla 1’, m’) = C(E, L ml 3 z )- ~ap; . ~ IE,I’, m’) (1.84)

where the quantum-mechanical operators have been symmetrized.s Defining a quadruple

moment

eQ = (E, I, mlQZZ[&,I’, m’) (1.85)

and comparing with Equation (1.84) allows the constant of proportionality to be written as

c= ‘Q1(21-1) ‘

and the matrix elements of the quantum-mechanical Hamiltonian become

25
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Using the Wlgner-Eckhart theorem and the “triangle selection rule” for Clebsch-Gordan

coefficients, *’2it is also possible to demonstrate that only nuclei with a spin-quantum

number greater than one-half will have a quadruple moment. Over two-thirds of the

NMR-active nuclides in the periodic table satisfy this condition.

As is the case for the other NMR Hamiltonians, it is convenient to express the

Hamiltonian in terms of products of spherical tensor operators rather than Cartesian ones

‘Q ‘
e2qQ ~ ~ (-1) ‘R~.mT?rn

21(21 –l)*=o,2m=_2 ‘ ‘

where

p:. = o

lQ
P:*2 = p

and

T~o = 12

T:.= ~ [31;- 12]

(1.88)

(1.89)

(1.90)

Note that 8Q (see Equation (1.78)) has been included in the constant in front of the sum in

Equation (1.88) rather than in the p:, terms.
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Because of the size of the quadrupolar interaction, it is necessary to consider not

on]y first-order perturbation terms (i.e. - those arising from the secular approximation)

when transforming to the rotating frame but also second-order terms. To derive these, we

will take the approach of Goldman et al.28which utilizes an operator form of perturbation

theory. Such an approach avoids the necessity of introducing correction terms as must be

done when using coherent Average-Hamiltonian Theory.7’*0

The operator form of static perturbation theory is simply a generalization of the

standard non-degenerate perturbation theory described in Section 1.1.4. The energy

corrections are projected onto the basis of eigenvectors of the zeroth-order Hamiltonian

which leads to an operator version of Equation (1.44) -

D= XO+D (1)+ D(2)+... (1.91)

where

D(n) = ~lj)E~n)fil (1.92)

j

and the E~n) are given by Equations (1.45) and (1.46). The advantage of this method

over traditional perturbation calculations of individual shiftsl * is that one can obtain an

analytical form for the Hamiltonian which can be used to describe the evolution of any

transition. This will be particularly useful for the simulations of Chapter 3.

For the quadrupolar interaction, the first order quadrupolar Hamiltonian can easily

be shown to be (in energy units)

where (!)Q k the quadrupolar coupling constant

3e2qQ
‘Q = 21(21 -I)h =

67t
21(21– 1) Cqcc.

(1.93)

(1 .94)
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Equation (1.93) is identical with what would be obtained by making the secular

approximation. The second-order contribution ii calculated from Equations (1.46) and

(1 .92) as follows

- (2)
% = D(2) = Zz

lj)fil?f@)(WfiilM
E (o)

j k~j j -E~O) “
(1.95)

But

~-m)~-ml = 1- ~ In)(nl. (1.97)
n#j-m

Substitution leads to

(1.98)

Because the term T~mT~ . commutes with the projection operator, Equation (1.98),-

becomes

Explicitly summing and regrouping gives

(1.99)

2
- (2)

‘imQ 2RQ RQ [TQ TQ 1 + R: 2R; z[T: 27T:-21}% ‘—18@L{ 2,1 2,-1 2,13 2,-1 , ,- , , (1.100)

where10
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[T:,>T;_ll = ~~(412-81; -l)IZ

[T; 2T: _21 = (212 -21:-1)1,.

(1.101)

(1.102)

Both the first- and second- order terms are orientation dependent.

Figure 1.2a shows the energy-level diagram for a single spin-5/2 nucleus subject to

the effects of the quadrupolar interaction to both first- and second-order. Note that to first-

order, the frequency of the (-m ~m) transitions (including the directly observable central

transition) are unaffected (due to the fact that T: ~ only depends on even powers of IZ).

This is generally the case for nuclei with odd-half-integer spin-quantum numbers.

Inclusion of the second-order terms will influence all of the transitions. In a powdered

solid sample, the central transition will be anisotropically broadened with a lineshape that

depends on the values of Cq,c and q, and an additional contribution to the isotropic shift

will also be introduced (see Section 1.4.2). It is possible to extract values of the

quadrupolar parameters by performing lineshape simulations; these parameters can then

be related to bond geometries.29’30’3] Further discussion of the nature of the central

transition lineshape can be found in Chapter 6.

In the experiments described in this thesis, the strength of the applied rf field will

not be strong enough to excite all allowed transitions simultaneously. However, selective

excitation of the central transition (m=- 1/2 ++m= 1/2) is possible if a relative] y weak rf

field CDII<<COQ is applied near resonance. 27 In such a case, the full IXand IYoperators

will not enter into Equation (1.58). Instead, one can assume that only the two-by-two

submatrix between the m=- 1/2 and m=+l/2 levels will be relevant. From Equations (1.50)

and (1.5 1), one can see that this fictitious spin- 1/2 operatod will have an additional factor

relative to the true spin-1/2 case. For a pulse applied along the +y axis, the operator in the

(-1/2,+1/2) submanifold will be

()I+: -
2

(1.103)
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~v

Figure 1.2- (a)Energyleveldiagramfor a singlecrystallite(TQ=W,@=45”)of a spin-5/2
nucleusin a staticmagneticfield. The effectsof the firstandsecond-ordercontributionsto
the quadrupolarHamiltonian are depicted. Note that the frequenciesof all (-m++m)
transitions are unaffectedto first order. (b) The five allowed transitions of a spin-5/2
nucleussubjectto both first-and second-orderquadrupolareffects. Relativeintensitiesof
the fivelines for non-selectiveexcitationare 5:8:9:8:5.27
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The factor (1+1/2) leads to an increased nutation frequency. Thus, the rf-field strength

required to rotate the central transition by 90° is 1/(1+1/2) of that required for a spin-1/2

nucleus (or for a quadruple in a liquid in which nonselective excitation is easily

achievable) .27 This will be particularly important for the cross-polarization experiments of

Chapter 4. A more rigorous derivation of this resu!: may be found in the thesis of J. H.

Baltisberger. 11

1.2.6 Other Interactions in NMR

Other interactions can also potentially affect solid-state NMR spectra. One of

these is an indirect dipolar-coupling mechanism which involves bonding electrons. It is

known as the scalar interaction and is characterized by a coupling constant, J. Although

important in solution-state spectroscopy, the J-coupling is generally neglected in solids

since it is typically much smaller than the direct dipolar coupling. Its effects can

sometimes be observed in highly-crystalline samples, however.32133>w’35’3bThis thesis will

not explicitly treat the J-coupling. Other interactions such as spin-rotation coupling and

the Knight shift in metalss are also beyond the scope of this thesis.

So far all of the interactions in Sections 1.2.3 -1.2.5 have been treated as separate,

additive perturbations. However, there are also potentially second-order cross terms

between the different interactions. 27 The most significant of these would involve the

quadrupolar interaction since it is the largest in the systems studied in this thesis. Such a

cross term would lead to frequency shift in the spectrum of the spin-1/2 nucleus that is

proportional to

‘D@Q (1.104)
aL

in Hz. Here ~ is the frequency of the dipolar coupling between the spins; aQ k the

quadrupolar frequency (see Equation (1.94)); and ~ is the Larmor frequency of the

quadrupolar nucleus. For the dipolar couplings in the system studied in this thesis (see

Chapter 3), such a term would be on the order of 5 Hz and is, therefore, negligible.

.,..:.. - .,-’
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1.3 Powder Spectra

So far this chapter

crystallite. In solid-state

has primarily been concerned with the orientation of a single

NMR, however, powdered samples are often used. These

powders are composed of many different crystallite, each of which is oriented differently

with respect to the static magnetic field. This leads to broad powder patterns for each type

of interaction (e.g. - CSA, dipoktr, quadrupolar). Examples of these are shown in Figures

1.4a and 1.5a.

To simulate the Iineshapes of powder samples, it is necessaiy to sum over many

different crystallite orientations. Conceptually, the most straightfonvard approach would

be to use equidistant points on a sphere; in practice, however, this is somewhat inefficient

and requires a large number of step sizes.11 Alternative methods of powder averaging have

been proposed;37y38the method used in this thesis is based on an algorithm described by

Cheng et al.,38 which traces out a spiral on a sphere. For a given number of points, this

algorithm has been shown to be more accurate than averaging over “random” orientations.

Using Cheng’s method, the Euler angles (cx,~,y) are chosen according to

and

360°. mod~ {n . V2}

N’

= 180°” n
~N,

(1.105)

(1.106)

360°. mod~ {n . V3}

N
(1.107)

where N is the total number of orientations in the powder average; n is an integer ranging

from 1 to N; and V2and V3are tabulated in Tables 1.2 and 1.3. Note that different values

of are V2 are optimal depending on whether one averages over three angles (for an

arbitrary rotation) or over two angles (e.g. - when cylindrical symmetry makes one of the

Euler angles irrelevant).
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N 50 100 144 200 300 538 1154

V2 7 27 11 29 37 55 107

V3 11 41 53 79 61 229 271

Table 1.2- Table of parametersfor use with Equations(1.105),(1.106), and (1.107) to determinesuitable
Eulerangles(a,fly) for powderaveragingin the generalcase.38

N 144 233 377 616 987 1597 2584 4181 6765 10946 17711

V2 55 89 144 233 377 616 987 1597 2584 4181 6765

Table 1.3- Tableof parametersforuse withEquations(1.105)and (1.106)to determinesuitableEulerangles
(a,~) for powderaveragingwhenthe symmetryof the problemis such that only two anglesare required.

1.4 Rotating Samples

While the broad static powder patterns contain information about the environment

of a given nuclear spin, they lead to poor resolution. Spectra of samples where the nuclei

are subject to more than one interaction or where multiple sites are present quickly

become uninterpretable. Fortunately, considerable improvement in resolution can be

achieved if the sample is rapidly rotated about an axis that is not aligned with the static

magnetic field. To understand how an external spatial reorientation can affect the spectra

of internal interactions, it is necessary to use Wigner rotation matrices.

1.4.1 Wigner Rotation Matrices Revisited

The orientation dependence of a rotating sample can be calculated by performing

two consecutive sets of Euler angle rotations as shown in Figure 1.3. The first set

describes the orientation of an individual crystallite relative to the rotor frame, and the

second set describes the orientation of the rotor relative to the B. field. Mathematically,

this can be expressed by applying Equation (1.35) in a nested manner

.. .... . --,.A., ,.. ,. . . . . . . . ,, -~>;, , m.,,,.....
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where f3is the angle between the rotor axis and the static magnetic field, Or is the rate of

rotation, and @ris the initial phase of the rotor (which for simplicity we will set equal to

zero in the following sections). Using Equation (1.36) and separating the n=O term gives

m’= -1

1 1 .
–ino.l,t (1)

+Zze dn, n@)D&, n(~, & Y)PI, m’

n =-1 m’=-l
n#O

Note that the first term is time-independent. In the limit of very rapid rotation,

dependent terms will average to zero, leaving only the time-independent term.

Xrot

(1.109)

the time-

(CL,p, y) ((n+, e,o)
()&, yp*~, ZPA.J —~ (Lob Yrot, %0,) ~ lab

Figure 1.3- Euler angle conventionfor a rotating sample. The first set of Euler angles
(%~,Y)describs the orientationof a given crystalliterelative to the rotor axis, and the
secondset (cort,t3,0)describesthe orientationof the rotorrelativeto the B. field.
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Several special cases are of interest. Recall that in the limit of large B. fields, only

spin tensors, Tl,m, with m=o are retained in the Harniltonian (secular approximation). This

corresponds to retaining only spatial tensors, Rl,m, with m=Q due to the form of the NMR

Hamiltonians (see Equations (1.60), (1.68), and (1.88)). Thus, the time-independent

spatial terms in Equation (1.109) will be proportional to d~~~(fO. For 1=2 and 6=54.74°,

d~l~(0) equals zero; rapid spinning at 0=54.74° (the “magic angle”) will, therefore,

eliminate the anisotropy in the Rz ~ terms. Note

shielding and dipolar interactions is contained

different and will be discussed in Section 1.4.2.

that the entire anisotropy of the chemical

in such terms; the quadrupolar case is

When the rate of spinning about the magic angle is less than or approximately

equal to the breadth of the static lineshape, the time-dependent terms cannot be ignored.

Considering the specific case of a spin subject to the chemical-shielding interaction, one

can use Equations

accumulate a phase

(1.12), (1.13), (1.66), and (1.109) to show that a crystallite will

given by

[ 01 n*()
n=-]m’=-z

J)

The time-dependent terms in Equation (1.110) can be regrouped into sines and cosines of

(i)rt and 2cort. Using a property of Bessel functions

.
izsin$

e =
z eikOJk(z) (1.111)

k=-=

one can show that the signal depends periodically on the rotation.39 When such a signal is

Fourier transformed, a series of “sidebands” spaced at the rotor frequency will appear in

the spectrum, and the intensities of the sidebands will contain information about the

chemical-shielding parameters.a Herzfeld and Bergef1° have tabulated ratios of the

sideband intensities to the centerband intensity for different values of the CSA parameters

to allow them to be rapidly determined from a magic-angle spinning (MAS) spectrum;

with modem computers, direct fitting of the spectrum can also be accomplished.

, .,--p,,.. *-.7.. . ., ‘ ‘x%?-f~?;.-::“
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Figure 1.4 shows simulations of spectra corresponding to the CSA interaction at

various spinning speeds. Note that since the total’ integrated intensity of the spectrum is

constant, rapid MAS not only improves resolution but also sensitivity.

Figure 1.4c is of the type that can be used for Herzfeld-Berger analysis.

Another interesting angle is 6=0”. Using the definition of the

rotation matrix elements (Equation (1.37)), one can show that for 0=0°

The spectrum in

reduced Wlgner

(1.112)

Since only m=O terms are relevant in the secular approximation, it is easy to see (by using

Equations (1. 109) and (1. 112)) that all time-dependent terms vanish for O=OO. In fact,

what remains is identical to the full, static powder pattern. Thus, spinning about an axis

parallel to the B. field is equivalent, from a theoretical point of view, to not spinning the

sample at all. This can be viewed as a consequence of the C- symmetry induced by the B.

I

-5 5
[k~z]

c)

, ,

-5 5
[k~z]

d)

-5 5
[k~z]

-5 5
[k~z]

Figure 1.4- SimulatedCSApowderpatternsfor 6CS=-2.5kHz and qcs=0.76 at spinning
speedsof(a) OHz, (b) 100Hz, (c) 1kHz,and (d) 10kHz. The total integratedintensityof
all spectraare the same,but for clarity,the verticalaxesof(a) and (b)have beenscaledby
a factorof 10. The rapid spinningspectrumin (d) has high sensitivity,but all information
about the CSA parametersis lost. The spectrum in (c) representsa,good compromise
betweensensitivityand informationcontent.
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field. In practice, spinning about 0° has the advantage of reducing the effects of magnetic

field inhomogeneity, but the disadvantage of requiring specialized solid-state NMR probe

technology.

1.4.2 Effects of Sample Rotation on Quadrupolar Lineshapes

For odd-half-integer quadrupolar nuclei, the situation is more complicated. This is

due to the functional form of the second-order quadrupolar anisotropy, which, as can be

seen from Equation (1. 100), depends on products of second-rank spatial tensors. It is well

known that the product of two commuting second-rank tensors can be written as a sum of

zeroth-, second-, and fourth- rank tensors.41 By substituting Equation (1.108) into

Equation (1. 100), one can explicitly calculate the form of this anisotropy for a sample

spun about an axis EIwith respect to the static magnetic field. In this thesis, we will be

interested in the frequencies of the (+m ++ -m) transitions

diQL.nl=“(I,Jg117‘) - (1>-J&7-m)” (1.113)

Explicit calculation of co~~Q~_m is laborious even when sidebands are neglected and only

time-independent terms retained. The steps needed to do this are outlined in the thesis of

K. T. Mueller10 for the case m=l/2 and have since been generalized to other values of

m.4214JWe will present only the final result of this calculation (valid for the case of fast

spinning relative to the static linewidth)

~ (2Q) = C;CC
+me -m — { AO CO(I,m) + A2(uQ,~Q)C2(I,m)P2 ( COSO)

m, (1.114)L
+ A4(ctQ,~Q)CQ(I, m)pQ ( cos e) }

where cxQand ~Q describe the orientation of a given crystallite relative to the rotor axis.

Note that, as expected, the second-order quadrupolar anisotropy is the sum of zeroth-,

second-, and fourth- rank terms (see Equations (1.38)-(1 .41)). Equation (1. 114) will be

discussed in more detail in Chapter 6; for now what is important to notice is that in

addition to the second-order Legendre polynomial, there is also a dependence on the
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fourth-order Legendre polynomial. Thus spinning at the magic angle only removes part of

the quadrupolar anisotropy (see Figure 1.5). Experiments which can produce isotropic

lines for odd-half-integer quadrupolar nuclei will be discussed in Chapter 6.

34-X~~
,- Frequency Frequency

Figure 1.5- Schematicof second-orderquadrupolarIineshapesfor the central transition
. (with 11=0.5)in (a) a static sample and (b) a sample undergoingfast MAS. Removal of

the P2(cos0) te~ has significantly n’~owed “
anisotropiccharacter.

1.5 Phase Cycling and Data Processing

the lineshape but not eliminated its

So far most of the discussions in this thesis have been concerned with the time-

domain behavior of the NMR H.amiltonians. However, spectra are typically presented and

anal yzed in the frequency domain. The two domains can be related by a mathematical

manipulation known as the Fourier transform. If s(t) is the evolution of the transverse

magnetization as a function of time, the frequency domain signal, S(o), will be given by

the complex Fourier transform of s(t)4

S(m) = ~s(t)e-iotdt = ~s(t)(cosmt-isinmt) dt. (1.115)

-co --

In NMR, one will often (though not always) record signals which are defined for t20 only.

In such cases, the Fourier transform, S(m), will contain both real (absorptive) and

imaginary (dispersive) parts. The two most common Fourier transform pairs in NMR are

summarized in Table 1.4.23 The discussion which follows in Section 1.5.2 will focus on

lines which have a Lorentzian lineshape altliough the same principles apply to Gaussian

lines as well.
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Line Type s(t) S((.i))

T2 (o-Q)(T2)2
Lorentzian eiQ&T2 -i = A(@)–iD(co)

l+(aX)2(TJ2 1+(0 -$2)2 (T2)2

-t-((D- f2)2(Tz)2}/4

( AT2) e
Gaussian eiQte-t2’ (T2)2

([

i(@–f2)Tz
~ l+erfx {-

2 ]) }

— . . . . . .- .,- ...
Table 1.4- ComplexFourier transformsof Lorentzianand GaussIandecays which are clermectror posmve
time values(:20) only. This lack of symmetryabout:=0 leads to dispersive”components.

Useful theorems pertaining to Fourier transforms have been summarized in

monographs on NMR4W and will not be reviewed here. Other important considerations

such as digitization (dwell times, spectral width, resolution), zero filling, and anodization

will also not be addressed in this thesis. Instead, the next two sections will focus on how

to control the evolution of the signals that are observed and how to use such methods to

obtain artifact-free, two-dimensional spectra.

1.5.1 Coherence-fiansfer Pathways

In NMR, signals are typically recorded using quadrature detection, which

corresponds to simultaneously observing two orthogonal components of the transverse

magnetization. Such an acquisition scheme allows one to distinguish (~+fl) from (w-

Q). If only one component were detected, those two frequencies could not be

distinguished. Mathematically, the detected signal, also known as a free-induction decay

(FID), can be written as]]

-t/Tz
s(t) = Tr { p(t)e I+eiOR} (1.116)

where $R is the phase of the receiver and 1+is the observable for quadrature detection. (In

principle, the quadrature operator could be described instead by 1., but we follow the

convention of Ernst et al.4)
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From Equations (1.49), (1.54), (1.55), and (1. 116), it is easy to see that only I.

terms in the density matrix will produce observable signal. It is, therefore, necessary to

apply pulses in such a way that all the frequencies of interest to the spectroscopist appear

as prefactors of 1.. The way to do this is by coadding signals from experiments in which

the phases of the rf pulses are varied in a systematic way.

To understand why such a phase cycling procedure works, it is usefid to look at the

behavior of different coherence under rotations about different axes. In Section 1.1.1, a

“coherence” was defined as an off-diagonal element of the density matrix. Coherence

can be categorized by their order, or total change in magnetic quantum number.4 This is

equivalent to characterizing them by their rate of precession about the z-axis since a

coherence OP of order p acquires phase as follows4

-i$Fz i$Fz
e ape = CJpe

-ip+

where FZ is the total z magnetization. Note that evolution

precession) does not change the order of a coherence.

(1.117)

about the z-axis (i.e. - free

Rotation about the x or y axis (as induced by an rf pulse) can change the order of a

coherence as can be calculated from the equations-in Sections 1.2.1 and 1.2.2. For

instance, a 90° pulse applied to the equilibrium magnetization will change the order from

p=O to a linear combination of p=+l and p=-1. A 180” pulse will change p=+l to p=- 1,

etc. Following Ernst et al.4, we can write the effects of a generalized rf pulse as

Urfqq!= Z6P,
P’ ‘

(1.118)

where Uti represents the action of the pulse. Phase shifting that pulse by @ and

rearranging gives
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–i$FZ “ -i $FZ –1 i$FZ
Urfe’$FzOpe U,f e = e

-i~FZ _l i$FZ
e Urf (cpeip$) Urf e

i$Fz iP$
= e‘ioFz(Urfopu;;)e e

x
-i$Fz i$F.ei P$

= e crp,e

P’

x
~ ,e-i (Ap)(I

=
P

P’

(1.119)

where Ap = p’ – p.

It is now easy to see that by summing experiments with different phase shifts, the

experimenter can control which coherence are retained and which are eliminated.

Detailed information on how to do this can be found elsewhere4*1145and only a few key

points will be summarized below.

The first point is that when one increments the phase of a pulse from experiment to

experiment by

A@ = 2z/N (1.120)

one will select every N-th value of Ap.4 This rule determines the minimum length of

phase cycle necessary to eliminate a certain coherence. For instance, suppose one wants

to select the +1 quantum coherence but eliminate the -1 quantum coherence. The

minimum phase cycle that achieves this would be a cycle with steps of 2n/3 or 120”. Of

course, smaller steps (such as 90° phase increments) would also eliminate the -1 quantum

coherence although this means that a longer phase cycle would be necessary. It will often

be desirable to retain more than one coherence at a given stage, particularly if one wants to

obtain pure absorption-phase lineshapes (see Section 1.5.2). This can easily be done using

Equation (1. 120); a phase cycle with steps of 27c/2 or 180” can be used to retain pa 1

while eliminating p=O,ti. Of course, some higher order coherence (p43,t5) will also

be retained in principle. In practice, however, high-order coherence can often be ignored

since ( 1) they may have a low or zero probability of existing (e.g. - an isolated system of

.,, !- - :, .:&j..:
.- .,,- -, . 7.-Z?.-.$---

41



two spin-1/2 nuclei can at most have p&2; even in Iarge spin systems the highest possible

coherence will be rare) or (2) later steps of the phase cycle will prevent them from

contributing to the final observed signal.

To detect the p=-1 coherence, the phase of the receiver is cycled according to

$~ = ‘~ (AP) i$j (1.121)
i

where (Ap)i is the desired change in coherence induced by the i-th pulse. By combining

Equations (1. 120) and (1. 121), it is possible to design a pulse sequence in which different

coherence are specifically retained during different time periods of the experiment. Such

a sequence can be graphically represented as a “coherence transfer pathway.”4 Examples

of these will be seen throughout this thesis (see, for instance, Figures 5.3 and 6.10) where

thick lines are used to indicate which coherence contribute to the final signal. Note that a

common shorthand notation for pulse phases that are multiples of 90° is 0=0°, 1=90”,

2=180°, and 3=270°.

Phase cycling can be used to removed hardware-induced artifacts. The CYCLOPS

cycle4Ginvolves shifting the phase of the last pulse along with the receiver through all four

spectrometer channels so that the effects. of receiver imbalance are removed. Another

common technique, spin-temperature alternation47 reverses the sense of precession (i.e. -

the direction of the magnetization vector) of the I spins relative to the B 11spin-lock field

from scan to scan by shifting the phase of the excitation pulse by 180”. If the I spin

magnetization is transferred to the S spins via cross polarization, the sense of precession of

the S spins about the B IS field will also alternate between scans.23 Consequently, cross-

polarized S-spin signal can be differentiated from directly excited S-spin signal, which

will always precess in the same direction for a given B IS field. Spin-temperature

alternation is frequently used in cross-polarization experiments to suppress direct signals.

Another important use of phase cycles is for obtaining pure absorption-phase

Iineshapes in two-dimensional spectra. It is to that topic that we shall now turn.
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1.5.2 Pure-Phase T%o-Dimensional Spectra

From Table 1.4, we see that the Fourier transform of an exponentially decaying,

complex signal has both absorptive and dispersive components. For maximal resolution,

however, it is desirable to have only absorptive peak shapes. In the one-dimensional case,

it is always possible to obtain a spectrum which is purely absorptive in one channel of the

detector and purely dispersive in the other. (Often this is done in practice by applying a

phase correction after collection of arbitrarily phased data.) This is not as easily done in

two-dimensional case, howevet. A generic two-dimensional FLD can be written as

iQJt, ifpj -t,/Tz‘tl/T2 ifZ2t2eiQ2 . .

S(tl, t2) = e e e e e (1.122)

where q I and 92 are arbitrary phase factors. Since it is always possible to phase correct

the data, we can set these phase factors to zero without any loss of generality. Performing

a Fourier transform over each time variable gives (see Table 1.4)4’11

S(col, 02).= (A(col)-iD(col)) (A(ti2)-iD(@2))

= [A(ol~)A(co2) - D(@~)D(@2)l (1.123)

–i [A(@l)D(@2) + Dab

Clearly, neither channel is purely absorptive. The presence of a dispersive term in the real

channel leads to “phase-twist” Iineshapes with negative intensity in the wings.

To obtain purely absorptive lineshapes, it is necessary to use a more complicated
.

acquisition scheme.48 This can be done by the methods of time-proportional phase

incrementation (TPPI),4A9’50hypercomplex data acquisition (also known as the method of

States et al.51), or whole-echo acquisition.52

The TPPI and States methods are equivalent in terms of signal-to-noise per unit

time.11 Since TPPI was not used to acquire any of the data in this thesis, it will not be

described here, and the interested reader is referred elsewhere.4111’49$50

The hypercomplex method of States et al.sl permits quadrature “detection” in the

indirect dimension. The technique requires the experimenter to collect two separate two-

dimensional data sets in which the amplitude modulation in the tl dimension differs by 90”

. . . ... .. - .’ --- ; -,- -,-~ . . . . . .
,, /...
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between the sets. In practice, the second data set is obtained by shifting the pulse at the

beginning or at the end of the tl period by 90°/lpl where p is the order of the coherence.4*53

The phase cycle must ensure that both the +p and -p coherence are”retained throughout
@(P)tl -i~l(p)t[

the entire tl period.4 The retention of both e and e leads to a signal with

cosinusoidal amplitude modulation, and the 90” phase shift gives a data set with sinusoidal

amplitude modulation. The two signals can be written as

-tl/T2 –if2zt2-t2/Tz
Sco$tl Yq) = cos (Klltl)e e e

-t ,/T2 -if22t2 -tz/Tz
‘~in(t1>‘2) = sin(~ltl)e e e .

(1.124)

(1.125)

where the -1 quantum coherence is directly detected in t2. Fourier transformation in the t2

dimension gives

-t,/T2
Sco$tl> @J = cos (C21tl) e (Mc132)+ iD(~2)) (1.126)

-tl/Tz
‘~in(t]7“2) = sin (f21tl)e (A(02) + iD(co2)) . (1.127)

Combining the real part ‘of Equation (1.126) with i times the real part of Equation (1.127)

gives

if21t1 -t ,/T2
Stot(tly@2)= e e A(m2) . (1.128)

Fourier transformation of the tl dimension gives a signal in the real channel, A(CI)1)A(CI)2),

which is purely absorptive.

Two particular linear combinations of Equations (1.124) and (1.125) are known as

“echo” and “anti-echo” signals and have the following functional forms

-iQltl -tl/T2 -ii2ztz -t2/Tz
‘echo(tl$ ‘2) = Scos(tl, t2) ‘is~in(tl, t2) = e e e e (1.129)

Santi(t,, t2) =
+iS21t1-tl/T2 -i~ztz -tz/Tz

ScoS(t17t2) + ‘s~in(tl>t2) = e e e e . (1.130)
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These phase-modulated signals can be acquired directly by phase cycling to chose the -p

coherence for the “echo” signal and the +p coherence for the anti-echo signal. However,

shorter phase cycles can be used if they are acquired as sine and cosine data sets

(assuming that one desires to suppress all the coherence in between -p and +p). Echo and

anti-echo data sets are particularly convenient when the position of the maximum of the

FID varies as a function of tl since they facilitate the application of shifted anodization

functions.s3 They also are useful when dealing with experiments involving concepts of

time reversal.4 Details on how to process such spectra are given elsewhere.53

An alternative technique for acquiring pure-phase spectra is known as whole-echo

acquisition.52 In this method, an echo is generated and acquisition started immediately

after the echo-forming pulse. Assuming that the shape of the echo envelope is given by

two Lorentzian decays centered about the point (t2-z) as shown in Figure 1.6, we can write

the collected signal as

–tl/T2 -if2z(12– ~)e-ltz - ~1/T2
swhole(tl, t2) = e-iQ1t’e e (1.131)

Note that the phase cycle is such that during tl the -p coherence is selected and the +p

coherence is suppressed and that the -1 quantum coherence is directly detected. Fourier

transformation of the t2 dimension gives

1 I1 81 11
180”

11 1

i nzr “
Figure 1.6- Creationof echoesfor whole-echoacquisition. The 180”echo-formingpulse
is placedat a time Tafter the start of the decay. (If MAS is used, the 18Wpulse must be
applied after an integral numberof rotor periods.) At a time Tafter the 180, the echo
maximumis reached. Acquisitionis started immediatelyafter the 180°pulse so that the
entire buildup and decay of the echo is recorded. In the discussionin the text, the finite
lengthof the 180”pulse is neglected.
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m
–iQltl -tl/T2

f‘whole(tl> ‘2) = e e e
-ifl, (t,- Z)~-]t,- ~1/T2 ‘iwztzdt

e 2“ (1.132)

-m

The key to whole-echo acquisition is that we record the entire buildup and decay

of the echo.4’54 This allows us to make the substitution t’ = t2 – z

-if21t1 -tl/T2 -icozzm -1t’1/T2‘i (% + %) “
J‘whoh$tl~ ~2) = e e e e e dt’ . (1.133)

.-w

The time-domain signal is now symmetric about t’ = O. Since it has even parity (see

Equation (1. 115)), the corresponding frequency-domain signal will have no dispersive

components. Explicit integration leads to

-if2,t, -t,/T2-icoz~

[

2T2

‘~hOle(tl’ %) = e - e e
)

(1.134)
1 + (co2+G?2)2(T2)2

iwzr
Applying a first-order phase correction of e gives

-if21t,-t, /T2

[

2T2
sWhole’(tl, @z) = e e

)

(1.135)
1 + (co2+Q2)2(T2)2

which, as expected, has no dispersive components in the 02 dimension. Thus, a pure

absorptio”n-phase two-dimensional peak can be obtained.

The biggest advantage of whole-echo acquisition is that only one two-dimensional

data set needs to be acquired. Thus, the signal-to-noise per unit time is a factor of J

greater than in the hypercomplex experiment. However, whole-echo acquisition will not

work for samples with long T2 values since the entire echo cannot be acquired in such a

case.

It is also possible to combine whole-echo acquisition with States or TPPI to

produce spectra with high signal-to-noise ratios.11’ss’sd
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As the case of whole-echo acquisition shows, an NMR spectroscopist has some

flexibility about how to define the origin of the time axis. This becomes particularly

important in cases in which the tl dimension is split inw multiple segments411]’54’5515b(see

Chapters 5 and 6). A few such experiments are represented schematically in Figure 1.7.

In these experiments (e.g. - MAT, DAS, MQMAS), the tl evolution is split into two or

more parts, and an isotropic echo is formed at the end of the last part of the tl period. An

anisotropic signal is then recorded during the time t2. To obtain spectra which correlate

narrow isotropic peaks with broader anisotropic lineshapes, one might naively think that

one should start acquiring the signal immediately after the tl period ends. However, as

can be inferred from examining Figure 1.7a, it is impossible to obtain a pure-phase

spectrum with such a sequence. Hypercomplex acquisition won’t work because the

evolution of the +1 coherence during the last part of the evolution period cannot contribute

to the final signal. One potential solution is to shift the t2 origin to immediately after the

last pulse. Then it is possible to do hypercomplex data acquisition (Figure 1.7b). Note

that the definitions of the two time variables have changed, however. The new variables

are related to the old variables as follows

t]’= (l- f)tl (1.136)

t2’ = ftl +t2 (1.137)

where ft I is the last fraction of evolution period. The acquired signal will therefore have

the form

secho(tl’, t2’) = e-iQ’t”e
-t,’/T2e-iC22 (t,’ - ft,) e-it,’ - ft,l/T,

-if21t1’-tl’/T2 -iQ@H -1’2’-&l’T~
= e e e e

(1.138)

Fourier transformation with respect to tz’ gives

f(o,’t,’
-i Qltl’ -t,’/T2-i —

[

2TZ

‘echo(t l“ ‘2’) = e e e 1-f
1

(1.139)
1 + (coz’+!i22)2(Tz)2

.7-
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a)
r

(1- f) t, A

AjI -~

-2

c)

r
t’,

+

d)

Figure 1.7- Schematicsof pulsesequenceswith split evolutionperiods. The white boxes
do not representspecificpulses but rather portionsof sequencesin which the transverse
magnetizationdoes not evolve. Whh the timingsshownin (a), pure-phasespectracannot
be obtainedsince the +1 coherenceduring the last tl segment (representedby a dashed
line) is not recorded.Pure-phasespectracanbe obtainedwithsequences(b), (c), and (d) as
describedin the text.
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Subsequently transforming with respect to t ~‘ and looking at the real part gives

[

Tz
Re [SeC~O(COl’,@z’)] =

(

fco2’ 2
1+ @l’+ Q1+—

),_f (T,)*
1 (1.140)

[

2T2
x

1 + (co2’ + L22)2 (T2) 2)

While this is a pure-phase signal, the frequencies in the two dimensions are correlated by

the factor f/ ( 1 – f) , leading to diagonal ridges in the two-dimensional spectrum. For

ease of interpretation, however, it would be preferable to have a purely isotropic signal in

one dimension and an anisotropic signal in the other dimension. That is, one would like to

view this pure-phase spectrum in terms of the frequencies ((1)1,~) corresponding to the

times (tl ,t2) shown in Figure 1.7a. Fortunately, it is possible to have the best of both

worlds -- absorptive Iineshapes and direct isotropic-anisotropic correlation -- if one shears

the spectrum by the angleq’lIJ5

@ (–)f
shear = arctan 1 –f -

(1.141)

In practice, the most ;~~enient method for shearin~ is to apply a first-order phase

[ “(ti)tl’]correction of exp +1 to Equation (1.139) which leads to

(1.142)

[

2T2
x

1 + (m2’+f22)2(T2)2 1

Writing Equation (1. 143) in terms of the variables (@l,@ gives
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Re[s~ChO(@l,@z)] =
2

‘+(?fT )—+Q1 2(T2)21 (1.143)

x (1 + (02+~2)2(T2)2 )“

where use has been made of Equation (1.136) and the fact that there is reciprocal scaling

between the time and frequency domains .4 Note that this shearing transformation and

concomitant change of variables leads to a spectral width in the ml dimension that is a

factor of (l-f) of that in the ml’ dimension. This necessitates a resealing of the O.)laxis in

order to obtain the correct isotropic shifts.55 It also means that the dwell time for the t ~‘

dimension of the experiment in Figure 1.7b must be carefully chosen to avoid aliasing?3

Pure-phase spectra can also be obtained by slight modifications to the pulse

sequence of Figure 1.7a/b. Insertion of a properly phase-cycled 90” pulse after the ftl

period can ensure that both +1 and -1 coherence are retained throughout the entire

evolution period (Figure 1.7c), allowing direct application of hypercomplex data

acquisition. ]o Alternatively, a 180° pulse can be inserted after a delay z to create a full

echo for each tl slice, and the principles of whole-echo acquisition can then be applied

(Figure 1.7d). Note that two first-order phase shifts (one associated with whole-echo

acquisition and one to shear the spectrum) will be required to process such data.s~

Examples of many of these methods will be see throughout this thesis.
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Chapter 2: 13Cvariable-Temperature CP/MAS Studies

of Tetracyclopentadienyl Complexes

In Chapter 1, the theoretical foundations for solid-state NMR were outlined. In

this chapter, an example of how solid-state NMR can be used to probe molecular motion

in a series of cyclopentadienyl compounds will be shown. Although this study involves

no new techniques, it demonstrates the power of cross polarization, magic-angle spinning,

and two-dimensional spectroscopy.

2.1 Fluxional Motion in Organometallic Compounds

One of the most important ligands in organometallic chemistry is the

cyclopentadienyl ligand, C5H5 or Cp, which can bind to a metal atom in at least ten

different ways.57 These different configurations are typically categorized by their

hapticity, q, which indicates the number of carbon atoms that lie close enough to the metal

atom to form a bond.58 Whether or not all of these carbon atoms actually participate in

such a bond is often unclear since the nature of bonding in these compounds is not fully

understood. Even the hapticity can be difficult to categorize due to ambiguities in X-ray

diffraction data. The existence of monohapto (ql), trihapto (?13), and pentahapto (r15)

cyclopentadienyl groups is now generally accepted, but while q4-cyclopentadienyl groups

have been postulated as intermediates in certain cases, their existence remains

controversial.57 As for the nature of the bonding, it is generally assumed that

monohaptocyclopentadienyl groups are bound to the metal atom via a single o-bond. In

the most common monohapto configuration, the carbon that binds to the metal is sp3

hybridized and the other four carbons are sp2 hybridized. The cyclopentadienyl ring is

nearly planar, and contains two double bonds. It is believed that, in most cases, all five

carbon atoms in a pentahapto group participate in the bonding through delocalized

molecular orbitals: such bonding is called n or ?l bonding in older literature.

Describing organometallic compounds in terms of static bonding configurations is

not an accurate way to represent many of them, however, since a large number are

stereochemically non-rigid. They can undergo rapid intramolecular rearrangements even

, ..... . . .. . . . . .. /f,
L . ..
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in the solid state. If these rearrangements do not lead to chemically distinct species, the

motion is described as fluxional. Fluxional motion was first postulated for the compound

(~5-C5H5)(q*-C5H5)Fe(CO)2 by Piper and Wilkinson in 1956 based on solution-state *H

NMR spectra.sg When Piper and Wilkinson failed to see the multiple peaks they expected

from a monohaptocyclopentadienyl group, they proposed that rapid ring rearrangements

caused the metal-carbon a-bond to shift to each carbon atom in turn. Subsequent studies

by other workers confirmed this hypothesis, and the motion was termed “ring whizzing.”a

Since then, a variety of possible cyclopentadienyl group motions have been observed

including interconversion of ~3 and ~5 ligands, interconversion of ~ 1 and ~5 ligands,

rotation of the T13-C5H5 groups, and rotation about the metal-carbon ~-bond.sT’~’bl

However, it is the ring-whizzing process which will primarily concern us here.

The mechanism for ring whizzing is difficult to determine a priori and remains

controversial today. Since it involves the motion of a sigma bond in a n-electron system,

it can be referred to as a sigmatropic rearrangement.62 .Sigmatropic rearrangements are

identified using the notation [i,j] where the indices i and j indicate over how many atoms

each end of the sigma bond migrates. In the case of a metal-carbon bond moving around a

cyclopentadienyl ring, several types of rearrangements could occur. Unfortunate y, it is

impossible to distinguish between a [1,5] shift and a [1,2] shift in a five-membered ring.

Thus, if such a shift were observed in an NMR spectrum, one could not determine whether

the mechanism involved completely delocalized molecular orbitals (a [1,5] shift) or

whether it were based on some sort of “principle of least motion” (a [1,2] shift).ss For

convenience, such shifts will be referred to as [1,2] shifts throughout the rest of this

chapter, but this does not imply that a particular mechanism is favored. Similarly, the

other possible type of shift in a five-membered ring will be referred to as a [1,3] shift.

Predicting whether [1,2] shifts, [1,3] shifts, or both are to be expected is non-

trivial. Although the molecular orbitals for cyclopentadienyl groups have been

deterrnined63’@*65, it is difficult to apply the Woodward-Hoffmann rules62 to the

rearrangements. This is because the transition metal atom has many orbitals of various

symmetries which could potentially participate in such a process, especially when the

valence shell is not filled. w$66’67Furthermore, the process may be dissociative rather than

concerted since metal-carbon bonds are relatively weak.66)67For dissociative processes, a
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Woodward-Hoffmann treatment would not be valid. In the case of cyclopentadienyl

groups, Woodward-Hoffmann-based calculations suggest that [1,5] shifts (which are

equivalent to [1,2] shifts in a five-membered ring) would be favored.68 To date, most

studies of the fluxional motion of monohaptocyclopentadienyl compounds have also

concluded that [1,2] shifts are the predominant rearrangement mechanism. However, the

conclusions that were reached often depended on the assumptions that were used to assign

the peaks in an NMR spectrum, and there has not always been a consensus.@’b9 Moreover,

in rl *-C7H7 rings, evidence for [1,2], [1,3], and [1,5] shifts has been found despite the fact

that only [1,5] shifts are predicted by the Woodward-Hoffman rules.70’66’67“Forbidden”

[1,3] shifts have also been observed in five-membered rings in an indenyl ligand bound to

Hg?] and a few compounds that were predicted to be static were, in fact, found to be

fluxional.bb Clearly orbital symmetry considerations are not always the only factors that

control fluxional motion.

NMR has proven to be a useful tool for studying several types of iluxional motion.

Few other techniques are able to detect rearrangements which do not change the structure

of a compound.72 Although fluxional motion has been extensively studied in the solution

state, the rates can sometimes be too rapid for solution-state NMR to aid in unraveling the

mechanism.w Solid-state studies are of paramount importance in understanding such

cases although, due to steric considerations, some mechanisms that occur in solution may

not necessarily occur in the solid state.73174The first solid-state NMR studies of fluxional

motion used ]H wideline NMR to measure second moments and Iinewidths as a function

of temperature. 72’75A series of complexes containing monohaptocyclopentadienyl rings

were examined using this method, and the experimental parameters were compared to

theoretical models.7b Temperature-dependent measurements of relaxation times were used

to determine the activation energy for the rearrangement. 77 However, detailed mechanistic

information could not be obtained. Several years later, analysis of ‘3C NMR static

powder line-shapes revealed that jumps through angles of 72° were favored over jumps of

144° in Fe(q5-C5(CH3)5) 2.78 Monitoring 13C CP/MAS lineshapes as a function of

temperature also permitted fluxional motion to be StUdiecl.Td’Tg’gO’gl’82 Recently, tWo-
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dimensional exchange NMR has been applied to study the rotation of

pentahaptocyclopentadienyl rings in the solid stateGly83as well as fluxional motion

involving other moieites.~’85

In this chapter, the results of a solid-state NMR study of several related

organometallic compounds will be presented. All of these compounds have four

cyclopentadienyl groups bound to a metal atom in an approximately tetrahedral

configuration, and all of the metal atoms have an oxidation state of IV. The compound

TiCp4 has previously been studied in the solid-state;82 the compounds that we studied

involve metal atoms that usually have a chemistry closely related to that of titanium.

Zirconium and hafnium are in the same column in the periodic table as titanium. They are

slightly larger and therefore prone to form compounds with higher coordination numbers

but are otherwise quite similar in behavior. While tin is not a transition metal element, its

chemistry is often also similar to that of titanium since it is the same size,70 and extremely

rapid fluxional motion

shown in Section 2.2,

however.

in tin compounds has previously been observed.w As will be

the chemistry of SnCp4, HfCp4, and ZrCp4 is not the same,

2.2 One-Dimensional 13C Variable-Temperature CP/MAS Experiments

Figure 2.1 depicts the structures of Sn(q 1-C5H5)4, Hf(~5-C5H5)2(?l ‘-C5H5)2, and

Zr(q5-C5H5)3(q l-C5H5) -- which will hereafter be referred to as SnCp4, HfCp4, and

ZrCp4, respectively. The numbers of sigma (q 1, and eta (q5) bonded cyclopentadienyl

rings in each compound were determined by X-ray diffraction.8G*87)88

The compounds were synthesized by Drs. Leonidas Phillips, Frances Separovic,

Murray S. Davies, and Manuel J. Aroney at the University of Sydney, Sydney, Australia

by reacting a metal-halide precursor with sodium cyclopentadienide using methods from

the literature.88’89 Since the materials were highly hydroscopic, they were shipped in

sealed ampules and transferred to 7.5 mm zirconia pencil rotors in a glove box with a N2-

atmosphere. Experiments were typically performed on a given compound for up to a day

at a time, and the rotors were stored in a desiccator for several weeks between
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experiments. Only the SnCp4 NMR spectra changed over time, suggesting that this was

the only one of the compounds to undergo significant degradation during the course of the

experiments.

All spectra were recorded on a home-built spectrometer interfaced to a Tecmag

pulse programmer and data acquisition system. The lH Larmor frequency was 301.2

MHz, and the 13C Larrnor frequency was 75.739 MHz. The probe was home-built but

incorporated a 7.5 mm Chemagnetics MAS spinning module and used a Doty91 double-

resonance circuit design. The pulse sequence used for these experiments is shown in

Figure 2.2 and is a standard Hartmann-Hahn cross polarization sequence with CW

decoupling on the protons during the acquisition period. Typical proton decoupling field

strengths were 35-50 kHz.

a)

u

b)

c)

Figure2.1- Structuresof (a) Sn(ql-C5H5)4,(b) l-If(~5-C5H5)2(q1-C51+5)Z,and (c) Zr(n5-

c5H55)3(q1-c5H5).
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The magic angle was set by maximizing the number of rotational echoes in the

time-domain 79Br spectrum of KBr. The cross-polarization match condition was set on

adamantane and fine-tuned on the actual samples. Typically, the second-sideband match

condition92 was used which, for a spinning speed of -4 kHz, gave a lH 90” pulse length of

7 PS and a 13C 90° pulse length of 9 p. The cross-polarization contact time was 1 ms.

To obtain temperatures in the range 133-333 K, the variable-temperature apparatus

depicted in Figure 2.3 was used. In this set-up, gaseous N2 was cooled by being passed

through a coil immersed in a liquid nitrogen bath. It was transported to the probe through

a heater and an insulated stack placed in the bore of the magnet. A thermocouple located

in the stack was interfaced to a temperature-controller which regulated the temperature of

the N2 gas to within ~ 5 K. The design of the MAS spinning module was such that the

rotor was supported by air bearings at either end, and the rf-coil was free-standing. This

permitted the temperature-controlled gas to access a large portion of the rotor through

holes at the top of the stator. N2 gas was also used for both the bearing and the drive air

lines to minimize water condensation in the probe.

During the course of the experiments the temperature was decreased in steps of 10

K and the sample was allowed to equilibrate for at least twenty minutes at each

temperature before spectra were recorded.

1
H

13c

Figure2.2

(90°)+0 (90°).0

“CP -, ‘Mecouple.-,..; -.-_\,.. ””, “’-. . I

,.:J2P,..-’ .

f

- Crosspolarizationpulse sequencefor lD VT-MASexDenments.CYCLOPS.
phasecycling46and spin-temperatureal;ernation47wereused. A flipbackpulse at the end
of the sequencereturnedany remainingspin-lockedproton magnetizationback to the z-
axis.
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To calibrate the controller, an independent series of experiments were performed

on the compound samarium acetate (SrnAc3) tetrahydrate using the same pulse sequence

and spinning speed. Since the 13C isotropic chemical shift of the chelating carbonyl group

in SmAc3 is temperature-sensitive93*w with a temperature dependence given by

8i~0 [ppm] = -4%+ 209, (2.1)

such experiments were used to establish a correlation between the temperature reading

from the thermocouple and the actual temperature of the sample.

exhaust
heater

V
-.. d

thermocoup&

probe’

bearing T

Figure 2.3 - Schematic of cooling apparatus used for variable-temperatureMAS
experiments. Bearinganddriveair for the MASprobeweresuppliedfroma high pressure
(300 psi) N2 dewar. Samplecooling was achievedby blowingN2 gas through a copper
coil locatedin a liquid-N2bath. The heatingcoil and thermocouplein the VT stack were
interfaced to a temperaturecontroller which provided a feedback loop to regulate the
temperature.

. .,, ... . .,, .
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2.2.1 SnCpA Spectra

Fluxional motion in tin compounds tends to be very rapid, which means extremely

low temperatures are needed to characterize it.w Previous solution-state lH NMR studies

of SnCp4 in various solvents showed only a single resonance even at temperatures as low

as 138 K, which prevented mechanistic information from being determined.95

X-ray diffraction studies of SnCp4 showed that all cyclopentadienyl groups were

monohapto and were bound to the tin atom in a distorted tetrahedral configuration through

elongated ~-bonds (see Figure 2.1 a).86 The crystal showed relatively low (monoclinic)

symmetry with large variations in the angles between the planes of the cyclopentadienyl

rings.

Figure 2.4 shows a series of one-dimensional MAS spectra of SnCp4 recorded at

different temperatures. The poor signal-to-noise of these spectra is due to the fact that the

TI of the protons in this sample is rather long at low temperatures, requiring recycle

delays of 40s.

At room temperature, only a single peak at 114.0 ppm was observed in the

spectrum of SnCp4. As the sample was cooled to 233 K, two additional broad peaks began

to appear at approximately 130 ppm and 50. ppm. As the sample was cooled still further,

the 114.0 ppm peak diminished in size, while the broad peaks continued to increase in

intensity. Finally, at 153 K, the 114.0 ppm peak had disappeared entirely, leaving only the

two broader peaks.

A definitive interpretation of these spectra is difficult due to their poor sensitivity

and resolution. Some of the sidebands overlap with some of the resonances, and the

recycle delay may not have been long enough to ensure that the spectra are quantitative.

Furthermore, SnCp4 was found to be extremely sensitive to moisture, and a change in the

appearance of the room-temperature spectra over several experimental sessions (data not

shown) indicated that the sample easily degraded. Although the spectra shown in Figure

2.4 were acquired on a freshly-packed sample, the integrity of the sample cannot be

guaranteed, and therefore all interpretations of the spectra are provisional. Nonetheless,

room temperature spectra acquired before and after the low-temperature experiments
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Figure2.4- 13CCP/MASspectraof Sn(q1-C5H5)4at differenttemperatures. The spectra
are unscaled,and asterisksare used to denotespinningsidebandsin cases where they do
not overlapsignificantlywithpeaks. Chemicalshiftsare in ppm fromTMS. For all of the
spectra except for the room-temperatureone, 128 scans were recorded with a recycle
delay of 40 s. (The room temperaturespectrumresultedfrom the acquisitionof 64 scans
with a 10s recycledelay.)
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appeared identical, which supports the hypothesis that the broad peaks in Figure 2.4

represent motional processes rather than degradation of the complex due to absorption of

water.

One possible interpretation of the spectra in Figure 2.4 is that the individual

monohaptocyclopentadienyl rings in SnCp4 have different activation energy barriers for

ring rearrangement. At 298 K, the temperature was sufficiently high that all ring

rearrangements were rapid, and a single, motionally averaged peak was seen. As the

temperature was lowered, the rings with the highest activation energy barriers were now in

the slow motion regime. In this limit, one would expect to see distinct and broad

resonances for each of the five types of carbons in these rings (see Section 2.2.2). These

resonances would then be expected to narrow as the temperature was lowered still further.

Indeed, the resonances at approximately 130 and 50 ppm were quite broad at 193 K, and

the 130 ppm signal narrowed appreciably at lower temperatures. Although only two peaks

(rather than five) were observed, the sum of the intensity of the peak at 130 ppm and its

sidebands is clearly greater than the intensity of the peak at 50 ppm in the spectrum at 153

K, indicating that more carbons contribute to the signal at 130 ppm. Further quantification

was not attempted due to the limited resolution of this data. However, the empirical

tendency96 for sp3-hybridized carbons to be more shielded than sp2-hybridized carbons

suggests that the peak at 50 ppm be assigned to the sigma-bonded carbons in the

cyclopentadienyl rings and that the peak at 130 ppm is due to the four remaining carbons.

Further support for this assignment comes from the fact that 114 ppm is the weighted

average of four resonances at -130 ppm and one resonance at -50 ppm.

As the temperature was lowered from 233 K to 153 K, cyclopentadienyl rings with

lower activational energy barriers entered the slow-motion regime, Thus, the intensity of

the peak at 114.0 ppm monotonically decreased while the intensity of the broad peaks

increased. Finally, at 153 K, the peak at 114.0 ppm disappeared almost entirely, indicating

that at this temperature few of the ring rearrangements were occurring rapidly on the

NMR timescale.

Unfortunately, it was not possible with our experimental apparatus to be sure that

the motion was frozen out entirely. However, it is likely that the broad peaks at 153 K

were due to a dispersion of the isotropic chemical shifts for the different sites rather than
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motional effects. X-ray crystallographic results show that steric distortions are present in

“86such distortions might be responsible both for variations in isotropiccrystalline SnCp4,

shifts and for the range of activation energy barriers.

Because of the long spin-lattice relaxation times and poor site resolution, two-

dimensional exchange experiments were not performed on this compound. Consequently,

the ring rearrangement mechanism could not be determined.

A Herzfeld-Berger analysisa was performed on the room-temperature spectrum to

determine the motionally averaged values of the carbon chemical-shielding tensor. The

following values were obtained: 01 ~= 165*8 ppm, 022= 146+ 15 ppm, G33=23f 10

ppm, qcs = 0.2 * 0.3 ppm, 5CS = -89 ~ lopprn. A previously repwted analysis of the

13C powder lineshape found values of c1 I = 180 ppm, 022= 143 ppm,room temperature

and 033 =31 ppm.95 The authors of this study did not report error bars for this fit, but the

signal-to-noise ratio was such that the error bars should be sizeable. Our results, therefore,

are not inconsistent with theirs.

2.2.2 HfCp4 Spectra

The compound HfCp4 has two monohaptocyclopentadienyl rings and two

pentahaptocylopentadienyl rings (see Figure 2.1 b), which make it similar in structure to

TiCp4. X-ray diffraction studies of HfCp4 show that, unlike in the case of the SnCp4

compound, considerable molecular symmetry is present. g7’97 The two eta rings are

magnetically equivalent and the two sigma rings are related by a two-fold axis of

symmetry. In fact, as will be shown below, the corresponding primed and unprimed

monohaptocyclopentadienyl carbons in Figure 2.1 b resonate at the same frequency. In the

rest of this chapter, the unprimed labels (C 1, C2, C3, etc.) will be used to refer to both

carbons. The double bonds are between C2 and C3 and between C4 and C5.

Solution-state lH NMR studies of both HfCp4 and TiCp4 have been performed

previously.gg While ring interchange was observed for TiCp4, no change was seen in the

1H spectrum of HfCp4 at temperatures as low as 123 K. A solid state study of HfCp4 was,

therefore, desirable.

,,, t ,.,, ,,, . . ,-----
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13C CP/MAS spectraFigure 2.5 shows the variable-temperature, one-dimensional

of HfCp4 for the same temperature range as in Section 2.2.1. The room temperature

spectrum shows a single peak (at 113.0 ppm) and its spinning sidebands. Herzfeld-Berger

analysisw)gg of this spectrum reveals that the chemical-shielding tensor associated with this

site is axially symmetric, which is what is expected for a rapidly moving q5-C5H5 group.82

Thus, the peak at 113.0 ppm was assigned to the ten carbon atoms of the two T5-C5H5

rings. This peak retained its intensity and its symmetry throughout the range of

temperatures studied, indicating that the activation energy barrier for eta ring reorientation

is very low. This motion may also provide an efficient relaxation mechanism for the

protons at low temperature: the *H TI of HfCp4 is approximately 1.7 s at room

temperature, significantly shorter than the T1 of SnCp4.

Absent from the spectrum at 298 K was direct evidence of the carbons from the

sigma rings. These carbons may have contributed to the broad baseline in this spectrum.

Alternatively, the motion of these groups could have occurred at a similar rate to the

decoupling frequency, leading to destructive interference and loss of signal.lm As the

temperature was lowered, peaks due to the monohaptocyclopentadienyl rings became

evident: first as broad humps at213 K and later as well-defined resonances at 90.0, 126.5,

127.9, and 130.7 ppm. These resonances correspond to four of the five types of carbons

on the ql-C5H5 ring. The fifth resonance was assumed to lie under the intense q5-C5H5

resonance because this large peak had six times the intensity of the smaller peaks; this

assignment was subsequently confirmed by two-dimensional exchange experiments (see

Section 2.3). As in the case of SnCp4, the most-shielded monohapto carbon resonance

can be assigned to the carbon sigma-bonded to the metal group since sp3-hybridized

carbons tend to be more shielded than sp2-hybridized carbons.9b The issues involved in

assignment of the remaining resonances will be discussed in Sections 2.3 and 2.4.

Table 2.1 shows the principal values of the 13C chemical shielding tensor for each

of the sites in HfCp4. These were extracted from a spectrum of HfCp4 recorded at 133 K

(data not shown) in which the motion of the sigma rings was assumed to be frozen out.

(No cross peaks were seen in two-dimensional exchange spectra at this temperature for

mixing times as long as 500 ins.) Herzfeld-Berger spinning sideband intensity analysis40

was used to determine the principal values and a modified version of the Speedy fit99
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program was used to deconvolve the partially overlapping lines by iteratively fitting a

simulated spectrum to the experimental spectmm. previous measurements of the 13C

CSA in this compound were performed on a static sample and, therefore, were an average

over all sites.gs

Isotropic
Shift [ppm]

011 [ppm] a2z [ppm] c33 [ppm] 11
Cs 6CS [ppm]

90.0 157 * 1 90*1 23*1 1.00* 0.04 .67 ~ 1

113.0a 162A1 162A 1 15*1 0.00 * 0.01 -98 t 1

126.5 197*3 15736 24*4 0.39 &0.10 -102 *4

127.9 199*4 158*6 26*4 0.41 *0.11 -102 t4

130.7 220 * 2 132*3 39*2 0.97 t 0.06 -91 *2

Table2.1- Principalvaluesof the 13Cchemical-shieldingtensorfor individualsites in HfCp4

a. This peakis a superpositionof twopeaks:an intenseresonancefromthepentahaptogroupand a
smallerresonance(withone-fifththe intensity)fromoneof thecarbonsin themonohaptogroup.
Thus, the correspondingprincipalvaluesreflecta weightedaverageof the two.

The intensity of the peak at 113.0 ppm is primarily due to the pentahapto carbons

although it also contains contributions from one of the monohapto carbons. Still, the

relative sideband intensities are dominated by the pentahapto carbons, and the chemical-

shielding tensor appears axially symmetric.

The principal values of the chemical shielding tensor for the other sites are similar

to those found in the literature.24)101 Based on a compilation of data from fifty-three

compounds, T. M. Duncan 24has determined that a typical olefinic carbon nucleus has an

isotropic chemical shift of 131 ppm (with a standard deviation of 10 ppm) and principal

chemical shielding tensor components of crl1 = 224+ 16 ppm, cr22= 134* 21 ppm, and

~~~ = 37 Y 15 pprn. The 126.5, 127.9, and 130.7 ppm resonances in the spectrum of

HfCp4 all have tensor components that fall within two standard deviations of these values,

while the cr22 and especially the al 1 components of the 90.0 ppm site lie outside this

range. This further supports the assignment of the 90.0 ppm resonance to the C 1 carbon.

However, empirical correlations of the chemical-shielding tensor components do not

permit a definitive assignment of the C2, C3, C4, and C5 carbons.
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Two-dimensional exchange experiments were successfully performed on HfCpo

and will be discussed in Section 2.3.

2.2.3 ZrCp4 Spectra

The X-ray structure of ZrCp4 was highly controversial for many years. Although

the structure depicted in Figure 2.1 c was first proposed as early as 1970,102 it was

immediately challenged by other researchers. 103 The primary reason for this was that a

Zr(q5-C5H5)3(q 1-C5H5) configuration would imply that the zirconium atom had twenty

electrons in its valence shell (four from the zirconium, five from each pentahapto

cyclopentadienyl group, and one from the monohapto group). This violates the well-

established “18-electron rule” which predicts that transition-metal elements strive to

achieve a closed-shell configuration. While exceptions to the 18-electron rule (such as

TiCp4 and HfCp4) are known, they tend to be in the other direction; that is, elements on

the left side of the d-block often have fewer than eighteen valence electrons because of

steric considerations.58 In fact, this is often proposed as a reason for the instability of such

compounds. ‘w In 1978, however, a more accurate X-ray structure determination showed

that ZrCp4 does indeed have the configuration shown in Figure 2.1 c, although the Zr-C

bond lengths were significantly longer than the typical case.88 It may be possible to think

of these extended bond lengths as indicative of effectively fewer electrons being donated

‘88189this would then allow an 18-electron configuration to be achieved.per Cp group,

Another surprising aspect of this structure was that it differed significantly from

HfCp4.87 Generally, it has been assumed that zirconium and hafnium have the same

organometallic chemistry.89 However, the X-ray structures showed that this was clearly

not the case (see Figure 2.1 ). Variable-temperature solution-state *H NMR studies of

ZrCp4 have been performed but showed no change in the spectrum for temperatures as

]OW as 123 K.98

In Figure 2.6 a series of one-dimensional, variable-temperature ‘3C CP/MAS

spectra of ZrCp4 are shown. A strong pentahapto peak at 112.8 ppm was visible at all

temperatures studied. Already at room temperature, resonances due to the

monohaptocyclopentadienyl groups were evident; therefore, higher temperature

., .,,,,~,.. . ., ;..,, ,.-
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Figure 2.6- 13CCP/MAS spectra of Zr(?15-C5H5)3(rIi-C5H5)at different temperatures.
The spectraare scaledto the height of the tallestpeak, but that peak is truncatedin these
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TMS. For each of thesespectra,512 scanswererecordedwith a recycledelayof 3 s.
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experiments were performed to reach the fast-exchange limit. At 173 K, five distinct

resonances from the carbons in the monohaptocyclopentadienyl ring were observed at

63.7, 119.1, 124.3, 138.3, and 141.0 ppm. A sixth resonance at 121.4 ppm was actually a

sideband of the 63.7 ppm site; with the achievable spinning speeds of the probe, it was not

possible to prevent the sidebands and centerbands from overlapping. Consequently,

Herzfeld-Berger fits could not be performed on the monohapto carbons. The principal

values of the pentahapto carbon chemical shielding tensor were determined to have the

following values: al ~= 157*5 ppm, cr22=156 t 9 ppm, CT33= 23 * 5 ppm, ?lCs = 0.0 f

0.1 ppm, 8CS = -89 t 5 ppm. To within the accuracy of the fitting procedure, the expected

13C CSA of this compound has been previouslyaxial symmetry was observed. The

measured by another group, 95 but their measurements were on a static sample which

prevented them from distinguishing between monohapto and pentahapto cyclopentadienyl

rings.

Two-dimensional exchange experiments on ZrCp4 were attempted for

temperatures in the range of 198-298 K and for mixing times as long as 500 ms, but no

cross peaks were observed. ,Ring rearrangement in ZrCp4 may occur on a slower

timescale, however.

2.3 Ilvo-dimensional Exchange Spectroscopy

While the one-dimensional spectra of HfCp4 in Section 2.2.2 indicated that motion

of the monohaptocyclopentadienyl rings was occurring, the nature of that motion

remained to be determined. A variety of possible dynamical processes such as monohapto

ring flips, exchange between monohapto and pentahapto rings, [1,2] sigmatropic

rearrangements, and [1,3] sigmatropic rearrangements may have been taking place.

To probe the dynamics in solid HfCp4, several types of experiments could be

performed. One possibility is one-dimensional magnetization transfer experiments] os’l~

which can indicate exchange between a given pair of sites. However, in many ways, two-

dimensional experiments are preferable since they can provide information about many

exchanging sites simultaneously. This examination of the dynamics of HfCp4 is believed

to be the first instance in which two-dimensional exchange NMR was used to study the

fluxional motion of q 1-C5H5 groups.
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Figure 2.7 shows the pulse-sequence, coherence-transfer pathway, and phase cycle

for the two-dimensional exchange experiment performed on HfCp4. In this sequence, the

cross-polarization step creates carbon magnetization which evolves for a time period t 1.

Then this magnetization is flipped along the z-axis-for a mixing period, ~mix, after which

another 90° pulse is applied and the signal recorded. If atomic rearrangement occurs

during ~mix$ a two-dimensional” pattern of peaks will result with off-diagonal Peaks

indicating which sites exchanged magnetization during the mixing time. The phase cycle

shown in Figure 2.7 retains mirror-image coherence-transfer

construction of pure-phase two-dimensional spectra (see Section

pathways to permit the
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Figure 2.7 - Pulse sequence, coherence-transferpathway, and phase c
dimensionalexchangeexperimentusinghypercomplexdataacquisition.

Ie for a two-
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altemation47 and CYCLOPS phase cyclin#G of the last pulse are used to eliminate

experimental artifacts. Proton decoupling is used during the acquisition to improve

spectral resolution.

Figure 2.8a shows the two-dimensional exchange spectrum of HfCp4 recorded at

188 K with a mixing time of 50 ms. The experimental apparatus and parameters were the

same as those described in Section 2.2. Cross peaks indicated exchange between five

pairs of resonances: (90.0, 113.0), (90.0, 130.7), (113.0, 126.5), (126.5, 127.9), and

(127.9, 130.7). Unfortunately, the spectrum was not artifact-free. The (90.0, 113.0) and

(1 13.0, 126.5) cross peaks were actually more intense than they appear in the contour plot

since the two-dimensional spectrum had a negative intensity ridge at 02 = 113 ppm. In

addition, there was a positive intensity ridge at co] = 113 ppm due to tl-noise, an

experimental artifact. This obscured two of the cross peaks; however, due to the

symmetry of two-dimensional exchange spectroscopy, their presence can he inferred from

the other dimension. The quality of the spectrum was not high enough to permit an

estimation of the rate constant from the cross peak intensities, but useful information

about the rearrangement mechanism could still be obtained.

Several conclusions about peak assignments and the nature of the primary

mechanism for rearrangement can be drawn from the locations of the cross peaks in the

spectrum. First, the presence of cross peaks between the large peak at 113.0 ppm and

some but not all of the monohapto peaks indicates that ring exchange between the

monohapto and pentahapto groups cannot be the dominant rearrangement mechanism at

this temperature. It also confirms that one of the carbon resonances of the q 1-C5H5 group

is indeed hidden underneath the q5-C5H5 resonance. Secondly, the presence of cross

peaks between the 90.0 ppm resonance, which was assigned to the C 1 carbon (see Section

2.2.2), and the peaks at 113.0 and 130.7 ppm indicates that the primary rearrangement

mechanism is not ring flips because the C 1 carbon would not exchange positions during a

ring flip. When a longer mixing time (200 ms) was employed to allow multiple exchanges

to occur, cross peaks were observed between all of the monohapto resonances (Figure

2.8 b). If we assume that significant spin diffusion has not occurred on this timescale (a

13C in the absence of spin-diffusion drivingreasonable assumption for natural abundance

mechanisms23’1071108),this further indicates that the rearrangement mechanism is not ring
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Figure 2.8- Two-dimensionalexchangespectra of Hf(~5-C5H5)2(q1-CSH5)2.at 188 K.
One hundredand twenty-eighttl sliceswith twenty-fourscans in eachwererecordedwith
a recycledelay of 3 s. Only positivecontoursare shown. In (a), a mixing time of 50 ms
wasused, whilein (b), a 200 ms mixing timewas used.

70



flips. Finally, the absence of equal-intensity cross peaks between all of the sites in Figure

2.8a rules out the possibility of multiple sigmatropic rearrangement mechanisms occuming

with nearly equal probability. We can therefore conclude that a single type of sigmatropic

rearrangement is the dominant mechanism, and that a single such rearrangement occurs in

less than 50 ms at 188 K.

The next step is to determine whether that mechanism is a [1,2] or a [1,3]

sigmatropic rearrangement. Figure 2.9 depicts a schematic of the pattern of cross peaks

observed in the two-dimensional exchange spectrum with the 50 ms mixing time.

Unfortunately, interpretation of this pattern requires that the five q 1-C5H5 carbon
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Figure 2.9 - Diagram of the cross peaks observed in the two-dimensionalexchange
spectrumof HfCp4and the possiblepeakassignments. The labelson the top and the right
sides of this diagramindicatethe carbonresonanceassignmentsthat correspondto a [1,2]
sigmatropicrearrangement. The labels on the bottom and the left sides of this diagram
indicate the carbon resonance assignments that correspond to a [1,3] sigmatropic
rearrangement.
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resonances be assigned. This is difficult to do a priori. Although one can assign the 90.0

ppm resonance to the Cl carbon with reasonable confidence (see Section 2.2.2),

assignment of the remaining carbons is more difficult. One can make comparisons with

solution-state studies of related compounds, but the perils of such an approach will be

discussed in Section 2.4. For HfCp4, two possible assignment schemes are consistent with

the experimentally determined pattern of cross peaks. The first, represented by the labels

on the top and on the right hand side of Figure 2.9, would assign the 113.0 ppm resonance

to the C2 carbon, the 126.5 ppm resonance to the C3 carbon, the 127.9 ppm resonance to

the C4 carbon, and the 130.7 ppm resonance to the C5 carbon. The pattern of cross peaks

would then be consistent with a [1,2] sigmatropic rearrangement in which C 1+C2,

C2+C3, c3+C4, C4+C5, and C5+C1. Alternatively, the assignment represented by

the labels on the bottom and left sides of Figure 2.9 is possible. In the assignment, the

113.0 ppm resonance would correspond to the C3 carbon, the 126.5 ppm resonance to the

C5 carbon, the 127.9 ppm resonance to the C2 carbon, and the 130.7 ppm resonance to the

C4 carbon. The pattern of cross peaks would then be consistent with a [1,3] sigmatropic

rearrangement in which C1+C3, C2+C4, C3+C5, C4+C1, and C5+C2.

Knowledge of which NMR peaks were exchanging, even without knowing to

which carbons they corresponded, permitted us to reexamine the one-dimensional

variable-temperature spectra of Section 2.2.2 and extract Arrhenius parameters. The

Iineshapes could now be fit using a model in which magnetization hopped among the

peaks according to the pattern depicted in Figure 2.9. In these fits, it was assumed that the

chemical shifts were constant over the entire temperature range and that the increased line

broadening at higher temperatures was entirely due to exchange. It was also assumed that

exchange between the centerbands and sidebands was negligible. The monohapto peak at

113.0 ppm could not be fit since it overlapped with the pentahapto peak, but it was

assumed to have a similar intensity to the other four monohapto peaks. The relative

intensities of the remaining four peaks were extracted from the 133 K spectrum and fixed

to those values in the higher temperature simulations. Figure 2.10 shows the experimental

spectra, the simulated spectra, and the rate constants extracted from the fits.
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An Arrhenius plot of in(k) vs. l/T is shown in Figure 2.11; the error bars reflect a

~ 5 K uncertainty in the temperature. From this plot, the activation energy for the

sigmatropic rearrangement that occurs in HfCp4 was found to be

E,
8 -1

= 24.4 t 1.5 kJ/ (K mol) and the preexponential factor was A = 8.4xlO s .

Once the resonances of the monohapto carbons are reliably assigned, the two-

dimensional exchange results can be used to definitively determine whether the

rearrangement mechanism is a [1,2] or [1,3] shift. To assign the peaks correctly, however,

independent experiments (such as INADEQUATE) will need to be performed on a doubly

13C-labeled version of HfCp4. Since doubly-labeled cyclopentadienyl rings are difficult

to synthesize, such experiments have not yet been performed.
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Figure 2.11- Arrheniusplot of the rate of sigmatropicrearrangementin the monohapto
cyclopentadienylringsof HfCp4in the solidstate. The activationenergyis Ea=24.4~ 1.5
kJ/(Kmol) and the pre-exponentialfactorisA = 8.4 x 108S-l.
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2.4 Comparison of HfCp4 and TiCp4 Exchange Spectra

Since the crystal structure of Hf(q5-C5H5)2(q *-C5H5)2 is very similar to that of

Ti(~5-C5H5)2(q 1-C5H5)2, it is interesting to compare our results with the results of a

recent solid-state NMR study of TiCp4.82 In this work, variable-temperature, one-

dimensional 13C CP/MAS experiments were performed on TiCp4 over the 165-369 K

temperature range. Below 200 K, five distinct monohaptocyclopentadienyl resonances

were seen at 89.3, 114.9, 121.8, 126.8, and 136.3 ppm. A large pentahapto peak at 117.3

ppm was also observed in all spectra. One-dimensional exchange experiments based on

magnetization transfer were performed at 165 K, and Iineshape analysis of the one-

dimensional, variable-temperature spectra was used to estimate the Arrhenius parameters

for the ring-rearrangement process. The authors of the TiCp4 study concluded that a

single dominant sigmatropic rearrangement was the primary motion at 165 K and that this

rearrangement was a [1,2] shift.

While their conclusion that a single sigmatropic rearrangement predominated is

supported by their experimental evidence, their method of peak assignment is somewhat

suspect. The authors noted that in solution studies of TiCp4 the C2 resonance is

degenerate with the C5 resonance, and the C3 resonance is degenerate with the C4

resonance.98 They therefore assumed that in the solid state, the C2 peak must lie next to

the C5 peak, and the C3 peak must lie next to the C4 peak. Although this appears

reasonable, our results for the structurally analogous HfCp4 compound show that this is

not necessarily the case. The only two peak assignments consistent with the two-

dimensional exchange spectrum of HfCp4 (see Figure 2.9) require that the peaks in either

the (C2, C5) or the (C3, C4) pair be separated by 17.7 ppm ! This is, admittedly, quite a

large separation for carbons with identical local electronic environments, but as the

authors of the TiCp4 study point out, a plausible explanation for large splittings between

monohapto carbon resonances in the solid state is a through-space perturbation of the local

electronic environment by the aromatic pentahapto rings.82 Regardless of the reason for

the splittings, it is clear that significant differences between solid and solution-state

spectra make assignments based on solution-state studies unreliable.

,,. ,, .-...-’,.: .,, ., ....,,,
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The authors of the TiCp4 study continued their arguments for the peak assignments

by comparing asymmetry parameters for the different sites and discussing expected ring

current shifts. They did not, however, justify why they thought the asymmetry parameter

was a valid criterion for assigning pairs of carbon resonances within

monohaptocyclopentadienyl groups. The components of the chemical-shielding tensor

can be quite sensitive to long-range interactions, 101and the asymmet~ parameters for the

monohapto carbons in TiCp4 (q = 0.54, 0.83, 0.87, 0.72, and 0.74) were significantly

different from those measured in the HfCp4 analogue (see Table 2. 1).

The final assignments made by the. authors of the TiCp4 study were the following:

C1=89.3 ppm, C3=1 14.9 ppm, C4=121.8 ppm, C2=126.8 ppm, and C5=136.3 ppm.

These assignments were then used in combination with magnetization-transfer

experiments and with Iineshape analysis to infer that a [1,2] sigmatropic shift

rearrangement was the dominant mechanism for the monohaptocyclopentadienyl rings in

TiCp4 at 165 K.

Although it may be tempting to make a one-to-one correspondence between the

peaks in TiCp4 and those in HfCp4, the above discussion shows that such assumptions can

be dangerous. Despite their similar structures, HfCp4 and TiCp4 have different crystal-

packing geometries, and the precise effect of such differences on the chemical shift is

unknown. We therefore chose to perform the same two-dimensional exchange experiment

(see Figure 2.7) directly on TiCp4.

A sample of TiCp4 was synthesized by Dr. Murray S. Davies according to the

method of Calderon et al.98 Due to the extreme sensitivity of this compound to moisture

and oxygen, the sample was sealed in a Wilmad glass rotor insert, and the entire insert was

placed into a 7.5 mm zirconia rotor. The two-dimensional experiment was performed by

Professor Eric Munson and Michelle Douskey at the University of Minnesota on a similar

apparatus to that described in Section 2.1.

Figure 2.12 shows the two-dimensional exchange spectrum of TiCp4 recorded at

183 K with a mixing time of 50 ms. Comparison with Figure 2.8 reveals that the same

pattern of cross peaks is present in both HfCp4 and TiCp4. Therefore, by the arguments of

Section 2.3, only two sets of peak assignments are possible. In one assignment, consistent

with a [1,2] shift, the 114.9 ppm resonance corresponds to the C2 carbon, the 121.8 ppm
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resonance to the C3 carbon, the 126.8 ppm resonance to the C4 carbon, and the 136.3 ppm

resonance to the C5 carbon. For the other assignment, consistent whh a [1,3] shift, the

114.9 ppm resonance corresponds to the C3 carbon, the 121.8 ppm resonance to the C5

carbon, the 126.8 ppm resonance to the C2 carbon, and the 136.3 ppm resonance to the C4

carbon. The assignment proposed by the authors of the TiCp4 study cannot, therefore, be

correct. As in the case of HfCp4, independent experiments will be required to determine

whether a [1,2] or [1,3] sigmatropic rearrangement mechanism is occurring.

This example highlights the utility of two-dimensional exchange spectroscopy.

Unlike one-dimensional experiments, which require one to make a series of assumptions,

the two-dimensional experiments provide direct evidence of which sites are exchanging.

>,,8, [sl,lllls 1,,,,,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,, ,, ,, r

130 120 110 100 90

[PPml

Figure 2.12- Two-dimensionalexchangespectrumof Ti(q5-C5H5)2(q1-C5H5)2at 183K.
Thirty-twot] slices were recorded. Only positivecontoursare shown. The mixing time
was 50 ms.
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For the cases of HfCp4 and TiCp4, they have shown that the monohaptocyclopentadienyl

rings predominantly undergo a single type of sigmatropic rearrangement in the solid state

and that only two sets of peak assignments are possible. When combined wit; an

independent measurement of the connectivities between neighboring carbons (for

instance, in an INADEQUA~ experiment), the exchange spectra will enable the ring-

rearrangement mechanism to be definitively determined.
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Spin Locking of Quadrupolar Nuclei During

MAs

All of the experiments presented in Chapter 2 required cross polarization from 1H

to 13C to enhance the carbon sensitivity. Without such cross polarization, the carbon

signal would have been too weak to be detected on a practical timescale. The favorable

properties of protons -- a high gyromagnetic ratio, high natural abundance, and typically

short longitudinal relaxation times -- have made their use as a polarization source nearly

ubiquitous in studies of organic, organometallic, and biological systems.

However, many interesting inorganic materials lack protons. In such cases,

another polarization source is necessary to facilitate the study of insensitive nuclei. While

nuclei such as 23Na and 27A1 seem promising due to their 100% natural abundance and

short relaxation times, they have spin-quantum numbers greater than 1/2 and therefore

are subject to the quadrupolar interaction. This can create complications when attempting

to cross polarize from them.

Since cross polarization can only occur if both spins can be spin-locked long

enough for magnetization to be transferred, it is necessary to determine the conditions

under which efficient spin locking is possible. In this chapter, the complications inherent

in spin locking a quadrupolar nucleus will be examined by both experiments and

simulations on a model aluminosilicate compound.

3.1 Low Albite as a Model Compound

Silicon is a major component of many technologically and geochemically

important inorganic materials including zeolites, glasses, minerals, and gels. Since these

29Si NMR has proven to bematerials often have limited long-range order, solid-state

particular y useful in eliciting information about their structure. lW>l’0However, the low

natural abundance of 29Si (4.7%) combined with its relatively low gyromagnetic ratio

make 29Si NMR inherently insensitive. Furthermore, significant improvement of the

signal-to-noise ratio by signal averaging is usually time-consuming due to the typically

long T, relaxation times of 29Si (frequently on the order of minutes). Consequently, two-

dimensional experiments are often impractical, unless isotopic enrichment or cross
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polarization (CP)lll is used. If the silicate contains protons, cross polarization from

29Si NMR intensities. In this thesis, however,protons to silicon can greatly enhance the

the case where protons are not present is investigated to see if cross polarization from

quadrupolar nuclei can provide a significant enhancement of the 29Si sensitivity.

Figure 3.1 depicts the crystal structure of the feldspar low albite (NaAlSi308) as

determined by %ray and neutron diffraction. 1]2 Low albite was chosen as a model

27A1.to-29Si and 23Na-to- 29Si cross-polarization experiments for severalcompound for

reasons. In many ways low albite is a typical inorganic aluminosilicate, composed of a

framework of connected A104 and Si04 tetrahedral and non-framework, charge-balancing

counterions (in this case Na+).*13 However, the analysis of cross polarization from the

quadrupolar nuclei in low albite is simplified by the presence of only one crystallographic

27A1 site and one 23Na site. Furthermore, low albite is highly ordered with the silicon
,0

occupying three distinct’ crystallographic T-sites in equal amounts.112 Two of these sites

are coordinated via bridging oxygens to one aluminum atom and three silicon atoms and

are commonly denoted as Q4( 1Al) sites. The superscript 4 indicates that all four oxygens

are bridging, and the integer 1 indicates the presence of a single aluminum “nearest

neighbor.” The third silicon site is coordinated via bridging oxygens to two aluminum and

@ Si(2Al) T2m site

4P Si(l Al) TI m site

Q Si(l Al) T20 site

@ Al TI O site

Q Na+

Qo

Figure 3.1- The structureof low albite (NaAISi@g)as determinedby X-ray and neutron
diffraction. Four crystallographicallyinequivalenttetrahedral sites are present: one is
occupiedexclusively by Al and the other three by Si atoms.
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two silicon atoms and is denoted as a Q4(2A1) site. Assignment of these silicon sites to

three distinct and narrow 2gSi MAS NMR resonances can be found in the

litera~re.113*114)115’116*1]7(Note that there is a mistake in the labeling of the crystallographic

sites in Ref. 116.) Table 3.1 lists these assignments along with the distances between each

Isotropic Number of Distance to
Distance to

Shifta Crystallographic aluminum alurninuin

[ppd T-site
nearest

nearest nearest

neighbors sodiumb
neighbor

-91.8 T2m 2
3.019A
3.080 ~

3.291 ~

-96.1 T20 1 3,132A 3.494 A

-103.9 Tlm 1 3.156~ 3.394 A

Table 3.1- Silicon sites in low albite (NaA1Si308).

a. Chemical shift values were referenced to an external TMS standard and are within 1 ppm of lit-

erature values. 113,114,115,116,117

b. Distances were determined using neutron-diffraction data from Harlow et al.] 12

29Si isotropic chemicalsilicon site and its nearest aluminum and sodium neighbors. The

shifts follow the typical trends for aluminosilicates with more aluminum nearest neighbors

corresponding to more deshielding within a given Qn group. 110The sample of low albite

used for the experiments in this thesis came from Cazadero, California, U.S.A. Figure 3.2

shows the

researchers

29Si MAS spectrum of this sample.one-dimensional Although other

have reported seeing splittings in two of the 29Si resonances in low albite

Si(2Al) Si(lAl) Si(l Al)
T2m T20 TI m

1 I l“’’I’’’’ l’’I’1 ’’’’1’” ‘l” r

-85 -90 -95 -1oo -105 -110

[PPm from TMSJ

Figure 3.2- 29Si MAS NMR spectrum of low
speed of 2.4 kHz and a recycle delay of 2000s.
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(which they attributed to heteronuclear J-couplings of approximately 8-9 Hz in

strength),* *8no such splittings were observed in our experiments. However, magnetic-

field inhomogeneity (due to sub-optimal shimming) may have obscured the J couplings.

a)

b)

c)

150 100 50 0 -50

[ppm from AN03 (q)]

Figure 3.3- 27A1MAS spectra of low albite at (a) 9.4 T, 4 ICHZspinning speed, (b) 11.7 T,
2.4 kHz spinning speed, and (c) 11.7 T, 500 Hz spinning speed. To a good approximation
only the central transition is excited and detected.

20000 10000 0 -10000 -20000

[kHz]

Figure 3.4- 23Na MAS spectra of low albite at 11.7 T, 2.4 kHz spinning speed. Only the
central transition is excitedldetected.
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The 27A1 and 23Na MAS spectra of low albite at various field strengths and

27AI spectrum is relativelyspinning speeds are shown in Figures 3.3 and 3.4. The

23Na spectrum shows astructureless at 11.7 T and a spinning speed of 2.4 I&z, but the

more typical powder pattern under the same conditions. Several sets of quadrupolar

parameters for these sites have been published in the literature 113,118.119and are summarized

in Table 3.2.

Nucleus CqCC[MHz] n Reference

27A] 3.37 0.634 Brun et al.119

3.29 0.62 Kirkpatrick et al.113

3.32 0.64 Woessner et al.118

23Na I 2.62 I 0.25
I

Brun et al.119 I
2.59 0.25 Kirkpatrick et al.113

Table 3.2- Quadrupolar parameters in low albite (NaAlSi30J

3.2 Spin Locking of Half-Integer Quadrupolar Nuclei

Since cross polarization can only occur if both spins can be spin-locked long

enough for magnetization to be transferred, it is necessary to de%rmine the conditions

under which efficient spin locking is possible. Both spin- 1/2 and quadrupolar nuclei

undergo relaxation during a spin lock, characterized by one or several rotating-frame

relaxation time constants, T1~. However, the behavior of the central transition of a half-

integer quadrupolar nucleus during a spin lock is also influenced by the time dependence

of the quadrupolar coupling under MAS, which can dramatically reduce the spin-locking

efficiency for certain combinations of rf field strengths, spinning speeds, and quadrupolar

coupling constants. A theoretical treatment of some of these interference effects has been

given in the litera~relzo~lzl’lzz~lzsand will be summarized here. Throughout this chapter

and the next, the S-spin refers to the quadrupolar nucleus (27A1 or 23Na) and the I-spin to

the spin- 1/2 nucleus (29Si).

When a spin-lock field is applied to a quadrupolar nucleus, the rotating-frame

Hamiltonian can be written (kt units of energy) as
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(3.1)

where Ols is strength of the rf-field used for the spin lock, Am is the offset of the

irradiation from the Larrnor frequency, and ~ is the rotating-frame quadrupolar

Hamiltonian. The quadrupolar Harniltonian in the rotating frame can be expressed in

terms of irreducible spherical tensor operators (see Section 1.2.5 ),6 and an operator form

of static perturbation theory can then be applied.28 This procedure gives a first-order term

(3.2)

Qwhere Rz ~ and Tz oQ are spatial and spin tensors, respectively,b and @Q is the quadrupolar

coupling constant

3e2qQ 6n(-j)Q=
2s(2s–l)fi = 2s(2s–l)cqcc”

(3.3)

The second-order contribution to the quadrupolar Hamiltonian is

.
- (2)

‘o; ZRQ RQ [TQ TQ 1 + R: 2R~ .2[T: 2JT:-21}% ‘—~8@L{2,12,_~2,1,2,_~ , , , , (3.4)

orientation-dependent,

where ~ is the Larmor frequency.

Because the R; ~ terms in Equations (3.2) and (3.4) are

the pattern of energy level spacings for a quadrupolar nucleus under a spin lock differs for

different orientations of a crystallite with respect to the static magnetic field. This creates

complications when a sample is spun about an angle other than O“ since the spinning

process changes the orientations of the crystallite in a powder sample.124 Considering

just the first-order term of the quadrupolar Hamiltonian and applying the Wigner rotation

matrices as shown in Section 1.4.2, one can write Equation (3.2) as
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+ ~IIQ(D~~!m(~Q7pQ~YQ) +J32, .m‘2)((xQ,pQ,yQ))]
(3.5)

}

= T;O” M2 (lQ)(aQ,pQ, yQ, t).

Here, ctQ, ~Q, and yQ are Euler angles relating the principal-axis system of the quadrupolar

interaction in a given crystallite to the reference frame of a rotor spinning about an axis

oriented at an angle 0 relative to the static magnetic field. For f3=0°, we see from Table 1.1

that

1 for m=O
df:~(OO) = {

O for m=-2,-1,1,2”
(3.6)

Thus only the time-independent (m=O) term of Equation (3.5) remains, and it is clearly

seen that spinning about O“ is equivalent to not spinning at all. For 6=54.74° (the magic

angle), d~~~(54.74°) = O, but the m#O terms are non-zero. All first-order quadrupolar

terms are, therefore, time-dependent under MAS, and the sign of f2 ‘lQ)(ctQ,pQ, yQ, t)

can change zero, two, or four times per rotor cycle. Figure 3.5 shows an energy-level

diagram for the Hamiltonian of Equation (3.1) where S=5/2 and where only the first-order

contribution to ~ is considered. The eigenvalues are plotted as a function of
&Q)/O

Is. When ii2(l Q)/cols is large, the eigenstates of Equation (3.1) are well-

defined and are labeled along each side of Figure 3.5. Four of these eigenstates are

eigenvectors of SZ. The remaining two eigenstates, IC+) and It-), are eigenstates of the

fictitious spin- 1/2 operatofl on the central transition S~3’4) and are defined as

k+) = : {$+ l-;)}

- J_ {p)-+}It-) - ~ ~

(3.7)

- , .,r.,. ., - ,.~ ..7 - :,.;., -,. ..
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For small values of L1(lQ)/col~ , the eigenstates of the Harniltonian are linear

combinations of these six eigenstates. A similar diagram can be drawn for the spin-3/2

case (see Figure 3.6).

Note that the ordering of the eigenstates in Figures 3.5 and 3.6 depends on whether
~(1 Q)

is positive or negative. Of particular interest, therefore, is the issue of what can

happen to the spin-state populations when LI (1‘) changes sign (i.e. - undergoes a “zero

crossing”) and how this influences the efficiency of the spin lock. To characterize the

possible scenarios, an adiabaticity parameter, a, has been definedlzo’lzl’lzs

(3.8)

15

10

CO

~- 5

-g

p

s

.& -5
LLl

-lo

-15 1 I 1 I I t I

-6 -4 -2 0 2 4 6

~(1Q)/m
1s

Figure 3.5 - Eig:~~alues of Equation (3.1) where S=5/2, “A-O. 1co,~, and ~~ is
approximated by ~ .
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where cor is the spinning speed. While the definition of the adiabaticity parameter can be

refined to explicitly include individual crystallite orientations,ll’ 122>12bEquation (3 .8) is

adequate for a qualitative description of the observed experimental behavior. For nuclei in

which @Q >> 0)1 ~, three regimes of spin-locking behavior have been defined based on the

t *‘) changes sign.rate at which Cl In the adiabatic-passage regime ( ct <<1) , the sign

change is sufficiently slow that populations are transferred from their original eigenstate to

the eigenstate that is derived by continuity. For the spin-5/2 case, this implies that the

populations will oscillate between lc~) and lf5/2) as depicted in Figure 3.7a. In the

sudden passage regime (u<< 1) , the sign change of the first-order quadrupolar

Hamiltonian occurs too quickly for the populations to follow, and the populations remain

in their original eigenstates. This is depicted schematically in Figure 3.7b. In both of

these regimes, efficient spin-locking of the central transition is possible (although, as we

wijl show below, there are some additional considerations). In the intermediate regime

(o! = 1 theoretically, ct = 0.4 experimentally] 20) the eigenstates are poorly defined, and

spin locking is very inefficient.

m 1+3/2)

5

a) - It-)3

75
>0 -
c
o
~ .2-1+3/2)

-~ - 1-3/2)

It-)1 , t , ,

-6 -4 -2 0 2 4 6
~(lQ)

‘% s
Figure 3.6 - Eig:~;alues of Equation (3.1) where S=3/2, Am=O.1COl~, and ;~ is
approximated by fiQ

87

,. . . .,.,. ...,



.— -—

a)

b)

15

-151 I

-6 -4 -2 0 2 4 6

d’Qv@,~

1+5/2)
10 ‘ It+) .-.~..

‘ Ic-).-:-””’””’. . . . . . ‘5’;5/2 )
5 - *.

-’~’’’’”1+3/2) ‘-’----.=~~

() ‘1-312) ~ 1+312)-

~~----..l-312)
-..-5

‘!+512),:@<’”” -.. ‘“ It+). .‘.
4:”” -..

Ic- ) -
-10 5~-;;2)

Figure 3.7- Diagram of population transfers in different regimes. The patterned lines
correspond to populations before and after a single zero crossing. (a) Adiabatic case.
Populations are transferred to the eigenstates to which they are connected by continuity.
(b) Sudden case. Populations remain in original eigenstates.
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This et-dependent behavior has important implications for many experiments. In

systems with vastly different C~CC’s,an rf field of a given strength may not lock all sites.

Although this is a disadvantage for purposes of quantitation, researchers have exploited

this property and used spin locks as filters for spectral editing. 127

With quadrupokw frequencies of the magnitude of those listed in Table 3.2 and

with O1S restricted to relatively low values due to the large coil size*28used in some of the

experiments (see Chapter 4), spin locking in our cross-polarization experiments is limited

to the sudden regime even at slow spinning speeds. In all simulations and measurements

presented in Chapters 3,4, and 5, et is less than 0.02.

3.3 Spin Locking in the Sudden Regime

To analyze the detailed behavior of the aluminum spin-lock efficiency at slow

spinning speeds and Iow-rf fields, experiments were performed on a home-built

spectrometer incorporating a Tecmag acquisition system operating at a proton Larmor

frequency of 301.2 MHz, which corresponds to a 27A] Larmor frequency of 78.5 MHz.

A Chemagnetics MAS probe with a 4 mm pencil rotor was used, and spinning

speeds were regulated to within *5 Hz by a home-built spinning speed controller. 129 For

each of the one-dimensional experiments 64 scans were summed with a recycle time of 5

s. The MAS spinning speed was 4000 Hz, and the selective 90” pulse length on the

aluminum central transition was 17 p.s, which corresponds to an rf-field strength of

@ls/(2n) = 4900 Hz.

Spectra using eight different spin-lock times (~s~ = 10 ps, 1 ms, 5 ms, 10 ms, 20

ms, 50 ms, 100 ms, and 200 ms) were recorded for each of twenty-eight different rf-field

strengths in the range from cols/ (2n) = 440 Hz to col~/ (2n) = 4400 Hz. This

-3corresponds to a range of the adiabaticity parameter from u = 5x10-5 to ct = 5x 10 .

The integral of the central transition of the Fourier-transformed spectrum was used as a

measure of the spin-lock efficiency for the corresponding rf field stre~gth. Figure 3.8a

shows the spin-lock efficiency for spin-lock times (~sL) of 10 ys, 1 ms, and 10 ms. As

expected, the intensity at ~sL = 10 ~s is fairly constant and does not depend on the field

strength. At longer spin-lock times, there is a very distinct dependence of the signal

intensity on the ti-field strength. In addition to rotating-frame relaxation, there are dips at
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Figure 3.8 - Spin-lock efficiency for 27A1 in albite during magic-angle spinning
(w,/ (2n) = 4000 Hz) as a function of the rf field strength. The “Al Larmor frequency is
78.5 MHz. (a) Integrated intensity of the aluminum central transition at a function of the
rffield strength for experiments with spin-lock times (’@of 10PS[ O ], 1 ms [ A ],and 10
ms [v]. (b) Simulations of the “equilibrium” spin-lock efficiency for a spin-5/2 nucleus
including both first- and second-order quadrupolar interactions and using the parameters
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spin-lock field strengths approximately equal to one-third, two-thirds, and one times the

rotor frequency. The measured intensities for spin-lock times of 1 ms and 10 ms are very

similar which indicates that the decay due to the time dependence of the quadrupolar

interaction is very fast and occurs during the first few rotor cycles. The main differences

between the spin-lock times of 1 ms and 10 ms occur at very low rf-field strengths and are

most likely due to off-resonance effects.

The distinct dips in intensity found experimentally are clearly reflected in the

numerical simulations shown in Figure 3.8b. These numerical simulations were

performed using the NMR simulation package GAMMA.130 To solve the Liouville-von-

Neumann equation for the time-dependent Hamiltonian, a small-step numerical

integration with a time increment of 50 ns was performed. The simulations included the

second-order quadrupolar Hamiltonian (Equation (3.4)) but omitted all relaxation effects.

The Hilbert space was limited to a one-spin system; therefore, all scalar and dipolar

couplings to other spins were neglected. The chemical-shielding tensor and chemical-

shift offsets were also neglected in the simulations. A spinning speed of 4000 Hz and a

27A1 Larmor frequency of 78.5 MHz were used. Three hundred different crystallite

orientations were averaged using the method of Cheng et al.38 (see Section 1.3) to

approximate all crystallite orientations present in a powder sample. The simulated time-

domain data (intensity as a function of the spin-lock time) show a very rapid decay within

the first 1 ms after which the intensity stabilizes and does not decay further due to the

omission of relaxation effects from the numerical simulation. This equilibrium value is

plotted as a function of the Y-field strength in Figure 3.8b. The simulations show the same

characteristic decays of the spin-lock efficiency for rf-field strengths equal to one-third,

two-thirds, and one times the rotor frequency as found in the experiment. At least some of

the differences between the measurements and the simulations are due to the limitation of

the simulation to a one-spin system. A similar level of agreement between experiment and

simulation was found for other spinning speeds (data not shown).

A full theoretical analysis of the spin-lock behavior of quadrupolar nuclei under

MAS is complicated by the fact that the Hamiltionian consists of a small time-independent

term and a large time-dependent term. Consequently, perturbative approaches are not

applicable, and analytical expressions for the interference process cannot be easily
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derived. Numerical simulations were, therefore, performed to determine whether the

interference effects between the mechanical sample rotation and the spin-lock field

strength are due to the first-order or to the second-order terms of the quadrupolar

Hamiltonian. Simulations of the spin-lock efficiency for 23Na (spin-3/2) and 27AI (spin-

5/2) in low albite both with and without the second-order quadrupolar interaction were

performed and are plotted as a function of the rf-field strength in Figure 3.9. The MAS

frequency was set to 0,/ (27C) = 2400 Hz which was the frequency used in the cross-

polarization experiments of Chapter

averaged. The fi-field strength

cl)l~/ (2Z) = 6800 Hz for both the

4, and 300 different crystallite orientations were

was varied between o+ ~/ (2z) = O Hz and

23Na and 27AI nuclei. These parameters result in

values ofa<0.019 for 27Al and ~ <0.015 for 23Na, both well within the sudden passage

regime. The Larmor frequencies were 130.31 MHz for 27A1 and 132.28 MHz for 23Na.

The time increment for the numerical integration was 80 ns. There are clear differences in

the positions of the resonance dips between the spin-3/2 and the spin-5/2 simulations, but

they follow a general rule. The spin-lock efficiency for simulations without the second-

order quadrupolar interaction (denoted by ❑ in both Parts of F@re 3.9) shows strong

dips for the condition

@ls 2N
~ ‘s+ 1/2

(3.9)

where N is a positive integer and S is the spin-quantum number of the spin-locked

quadrupolar nucleus. At these dips, the efficiency decays to approximately 50% of the

non-resonance value. The number of dips predicted by considering only the first-order

quadrupolar interaction is, however, insufficient to characterize the experimentally

observed spin-lock efficiency.

In the simulations which include the both the

interactions (denoted by 0 in Figures 1 and 2),

strongly when

@ls N
q ‘s+ 1/2

first- and second-order quadrupolar

the spin-lock efficiency decreases

(3.10)
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Figure 3.9- (a) Simulations of the spin-lock efficiency for 23Na (S = 3/2) at an MAS
frequency of o,Z (27t) = 2400 Hz both with [o] and without [ ❑ ] the second-order
quadrupolar interaction. (b) Simulations of the spin-lock efficiency for 27A] (S = 5/2) at
an MAS frequency of O,Z(27t) = 240) Hz both with [ 0 ] and without [ ❑ ] the second-
order quadrupolar interaction. Solid lines are guides to the eye. For all simulations the
quadrupolar parameters of low albite were used.”3
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This leads to twice as many dips in the rf field dependence of the spin-lock efficiency as

compared to the simulations without the second-order quadrupolar interaction and agrees

with our experiments.

With increasing co. the overall efficiency of the spin lock decreases due to the

large second-order quadrupolar Hamiltonian. This is the reason for the generally poorer

23~a in Figure 3.9a (0)~spin-lock efficiency for the = 8.11X106 rad/s ) compared to the

27A1 in Figure 3.9b (CO~ = 3.10x106 rad/s ) for the simulations which include both first-

and second-order terms. In making such comparisons, it is important to consider the

values of @Q rather than the more commonly tabulated CqCCvalues (see Equation (3”3))

since the [2S (2S – 1) ]‘1 scaling factor differs significantly for different values of S. In

the case of low albite, for instance, the CqCCfor 23Na (S=3/2) is less than the CqCCfor 27A}

(S=5/2), but the value of @Q for 23Na is greater than the value of @Q for 27A1. When

—

o 2000 4000 6000
q s/(2@ [Hz]

23Na (S = 3/2) at an MASFigure 3.10- Simulations of the spin-lock efficiency for
frequency of or/ (2P) = 2400Hz and with w~ = 3.10x106radk (CqCC= 0.99 MHz) and
q = 0.63. Values are plotted both with [ o ] and without [ ❑ ] the second-order quadrupolar
interaction, and solid lines are guides to the eye. Note that with a smaller 6)Q, the dips are
much sharper than in Figure 3.9a.

94



23Na (see Figure 3.10), the resonancessmaller values of 6)Q are used in the simulations for

at low rf-fields become sharper than in Figure 3.9a, and the spin-lock efficiency at points

between the resonances increases.

The simulations shown in Figures 3.8b, 3.9 and 3.10 were performed for the case

of on-resonance irradiation. When rf offsets of several hundred Hertz were incorporated

into the simulations that only included the first-order contribution to the quadrupolar

Hamiltonian (see Figure 3.11), the spin-locking behavior became qualitatively similar to

the second-order case, and Equation 3.10 was obeyed. This is not surprising since both

second-order shifts and rf offsets can be expressed as linear combinations of fictitious

spin- 1/2 S~a’b) operators4 connecting the +m and -m states. 120

Clearly, both first-order and second-order terms of the quadrupolar Hamiltionian

influence the spin-locking efficiency. However, it is important to consider the

contributions of individual crystallite orientations to the powder average to determine

whether the decreases in spin-lock efficiency are a property of the single-crystallite

Hamiltonian itself or whether they are due to interference effects between different

crystallite orientations. This has been partially discussed in the literaturelzs and is

examined here in more detail.

Figures 3.12, 3.13, and 3.14 show spin-lock time dependence for a spin-5/2

nucleus (27A1 in low albite) with (f-j) and without (a-e) the second-order quadrupolar

interaction for four different orientations (a-d and f-i) and for the powder average (e and j).

For the simulations of Figure 3.12, the spinning speed was 2400 Hz, and the rf field

strength was 800 Hz; these values satisfy the resonance condition of Equation (3. 10) but

not that of Equation (3.9). This is reflected in the fact that the simulations which exclude

the second-order quadrupolar interaction (Figure 3. 12a-e) show a good spin lock with only

small-amplitude oscillations. Consequently the powder average (Figure 3. 12e) shows

almost no decay. Inclusion of the second-order quadrupolar interaction has a large effect

on the spin-lock behavior (Figure 3. 12f-j). The spin-locked magnetization oscillates

between the positive and negative x-axis at a frequency that depends strongly on the

crystallite orientation. The interference between these different oscillation frequencies

causes the fast decay observed in the powder (Figure 3. 12j).

,,.-. ..- ..>, , -:,.; ““,” .;~.,7;,.>.-... ,’,,. r.,
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0 1000 2000 3000 4000 5000 6000 7000

q~/(27@ [Hz]
Figure 3.11 -Spin-lock efficiency as afunction of resonance offset. The parametersof
Figure 3.10 were used in these simulations. Values are plotted both with [o] and without
[u] the second-order quadrupolar interaction, and solid lines are guides to the eye. (a)
Offset of 10 Hz. The behavior is qualitatively the same as for the on-resonance case. (b)
Offset of 100 Hz. Ex&aresonances begin togowin mating the first order simulations
similar to the second order case. (c) Offset of 500 Hz. Except for a slight distortion at low
frequencies, the first and second-order cases are very similar now.

96



0.2
~, 0; -

-0.1 “
-0.2 .

t

c)

-0.1
-0.2 I I1 I

I 1

-!!!r
-0.21 I

0.2 -

d)
0.1 ~

o
-0.1 ‘
-0,2

0.2
0.1

9) o
-0.1
-0.2

1 I
I 6

0.2

h)
0.1

0
-0.1
-0.2

I I
I I

0.2

i) O“;
-0.1
-0.2

200

100
m

J)
o

-1oo “
-zooo~ +OO.’OO

20 40 60 80 100

%L
[ins]

%L
[ins]

Figure 3.12- Simulated spin-lock efficiency for 27A]in low albite at an MAS frequency of
cor/ (27K)= 2400 Hz and a spin-lock field strength of w,~/ (2.n) = 800 Hz. The Euler
angles (UQ,~Q,@) relate the principal-axis system of the quadrupo[ar interaction in a
given crystallite to the reference frame of a rotor spinning at the magic angle. The
simulations (a)-(e) were done without the second-order quadrupolar interaction while the
simulations (f)-(j) include the second-order uadrupolar interaction. (a)-(d) and (f)-(i)

8show selected crystallite orientations with a =#=0” and ~Q=I(Y ((a) and (f)), ~Q=300
((b) and (g)), BQ=5V ((c) and (h)), ~Q=70” ((d) and (i)). The simulations in (e) and (j)
show the average over 1154 different crystallite orientations. For this choice of spinning
speed and rf field strength, only the resonance condition of Equation (3.10) is fulfilled.
Therefore, the spin lock is very stable without the second-order quadrupolar interaction (e)
but decays rapidly when the second-order quadrupolar interaction is included (j).
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Figure 3.13- Simulated spin-lock efficiency for 27A1in low albite at an NIAS frequency of
wr/ (2Z) = 2400 Hz and a spin-lock field strength of ml~z (2z) = 1600HZ. me Euler
angles (aQ,~Q,@) relate the principal-axis system of the quadrupolar interaction in a

given crystallite to the reference frame of a rotor spinning at the magic angle. The
simulations (a)-(e) were done without the second-order quadrupolar interaction while the
simulations (f)-(j) include the second-order

3
uadrupolar interaction. (a)-(d) and (f)-(i)

show selected crystallite orientations with a 4=(Y and ~Q=l& ((a) and (f)), ~Q=30°
((b) and (g)),llQ=5w ((c) and (h)), 13Q=7&((d) and (i)). The simulations in (e) and (j)
show the average over 1154 different crystallite orientations. For this choice of spinning
speed and rf field strength, the resonance conditions of Equation (3.9) and (3.10) are both
fulfilled. Therefore, we see a fast decay of the spin-locked magnetization both with@ and
without (e) the second-order quadrupolar interaction.
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Figure 3.14- Simulated spin-lock efficiency for 27A1in low albite at an MAS frequency of
OIr/(2n) = 2400 Hz and a spin-lock field strength of 011si (2n) = 1200Hz . The Euler
angles (ctQ,~Q,~) relate the principal-axis system of the quadrupolar interaction in a
given crystallite to the reference frame of a rotor spinning at the magic angle. The
simulations (a)-(e) were done without the second-order quadrupolar interaction while the
simulations (f)-@ include the second-order uadrupolar interaction. (a)-(d) and (f)-(i)

8show selected crystallite orientations with a =fbY and ~Q=1(Y ((a) and (f)), ~Q=300
((b) and (g)), ~Q=50” ((c) and (h)), ~Q=70” ((d) and (i)). The simulations in (e) and (j)
show the average over 1154 different crystallite orientations. For this choice of spinning
speed and rf field strength, neither the resonance condition of Equation (3.9) nor that of
Equation (3. 10) is fulfilled. Therefore, the spin lock is stable both with (j) and without (e)
the second-order quadrupolar interaction.
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For the simulations of Figure 3.13, the resonance conditions of Equations (3.9) and

(3. 10) are simultaneously satisfied by setting the spinning speed equal to 2400 Hz and the

rf-field strength equal to 1600 Hz. In Figure 3.13 there are strong oscillations for both the

simulations without (Figure 3.13a-e) and with (Figure 3. 13f-j) the second-order

quadrupolar interaction. However, when the second-order quadrupolar interaction is

omitted, the oscillations are only between the positive maximum and zero (Figure 3.13a-

d) leading to a reduced but non-vanishing value for the powder average (Figure 3. 13e).

Inclusion of the second order interaction results again in oscillation between the positive

maximum and its corresponding negative value (Figure 3. 13f-i). Consequently the

powder average is almost zero (Figure 3. 13j) due to the interference of magnetization

from different crystallite orientations. Simulations for spin-lock fields in between

resonance points (see Figure 3.14) show only small oscillations about non-zero values and

thus good spin-lock efficiency. Similar simulations were calculated for spin-3/2 nuclei

(data not shown) and show the same general behavior as the spin-5/2 simulations

discussed above.

Note that the powder-averaged simulations of the spin lock at the resonance

conditions (see, for instance, Figure 3. 12j) show oscillations for short spin-lock times

(~~~< 5 ins); such oscillations were also observed experimentally (data not shown).

Fourier transformation of these reveals lineshapes that look qualitatively similar to rotary

resonance spectra 13*of spin-1/2 nuclei in which the chemical-shielding an isotropy is

recoupled by setting the spin-lock field equal to one or two times the spinning frequency.

Work is currently in progress to understand the nature of the lineshapes observed in the

quadrupolar case and to determine whether the quadrupolar parameters can be extracted

from such spectra.

The resonance conditions defined by Equation 3.10 have an important

consequence for cross-polarization experiments involving half-integer quadrupolar spins.

Before setting up the cross-polarization condition, it is necessary to experimentally

optimize the spin-lock efficiency of the quadrupolar nucleus for a given sample (i.e. -

given 6.)Q) and spinning speed in order to avoid a severe loss of magnetization.
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3.4 Direct measurement of the 27A1and 23Na TIP’s in low

In addition to losses due to inefficient spin locking, the

quadrupolar nuclei under spin-lock conditions is further influenced

albite

magnetization of

by rotating-frame

spin-lattice relaxation. Unlike for the case of spin-1/2 nuclei, the rotating-frame behavior

of a quadrupolar nucleus cannot in general be modeled by a single exponential.2G’132’133

Consequently, no single relaxation time constant (TIP) can be defined. In our

experimental observations, rotating-frame relaxation of aluminum and sodium in albite

consists of at least two exponential y decaying components. Figure 3.15 shows such a

decay for 27A1in albite for co,s/ (2z) = 500 Hz and cor/ (2z) = 2400 Hz (the values

used in the cross-polarization experiments of Chapter 4). The solid curve in Figure 3.15

corresponds to a least-squares fit of the data to a biexponential function of the form

1.0

0.8

0.6

0.4

0.2

0.0

-t/Tf -t/’r$
I (t) =A. e +B”e

J

I I I I I

o 0.01 0.02 0.03 0.04 0.05 0.06

z~~ [s]

Figure 3.15 - Rotating-frame relaxation of 27A1 in albite at w,~z (2n) = 500 Hz and
(l)r/ (2X) = 2400 Hz. The solid line is a nonlinear least-squares fit of the experimental
points to a biexponential function with time constants of 2.7 and 85 ms.
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in which the fast-decaying component is characterized by a time constant Zf = 2.7 ms;

the slowly-decaying component is characterized by a time constant ~~ = 85 ms; and the

scaling parameters have values of A–4. 13 and B=O.71. The rotating frame relaxation of

23Na in albite also requires more than one exponential for a good fit (see Figure 3.16).

With typical cross-polarization contact times on the order of ZCP = 10 ms to

=CP = 50 ms, the rotating-frame relaxation of the quadrupolar nuclei in low albite poses

no problem for efficient cross polarization.

1.0 1 I , i

0.8 -

>

0.6

0.4 -

)

0.2 -

0.0 “’ I , I I , ,

0 0.05 0.10 0.15 0.20

Figure 3.16 - Rotating-frame relaxation of 23Na in albite at ml~/ (2n) = 500 Hz and
Or/ (2z) = 2400 Hz. The solid line is a nonlinear least-squares fit of the experimental
points to a biexponential function with time constants of 9.1 and 28 ms. Note that even
with a biexponential, the first points are not well fit. However, a mono-exponential fit fads
completely.
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Chapter 4: Cross Polarization of Quadrupolar Nuclei

During MAS Using Low Radiofrequency

Field Amplitudes

Using the results of the spin-lock efficiency study of Chapter 3, the 27A1-to-29Si

cross-polarization dynamics in low albite were investigated. Although cross polarization

27A1 since the cross-was achieved from both 27A1 and 23Na, we chose to concentrate on

polarized signals were more intense. As mentioned in Section 3.1, albite has three

different silicon sites (see Table 3.1): two of which (Q4( lA1)) have one aluminum atom

and three silicon atoms as nearest neighbors while the third (Q4(2AI)) has two aluminum

atoms and two silicon atoms as nearest neighbors. Based on simple models one might

expect that the NMR signal intensity corresponding to the silicon with two aluminum

atoms as nearest neighbors would be twice as intense as those of the silicons with only one

aluminum atom as a nearest neighbor. lM However, as a one-dimensional 29Si NMR

27A1-to-29Si cross polarization shows, this is not true in the casespectrum acquired using

of low albite (Figure 4.1). The two silicon sites in albite with one aluminum nearest

neighbor (8 = –96. 1 ppm and 6 = –103.9 ppm ) have equal intensities while the site

with two aluminum nearest neighbors (5 = –9 1.8 ppm ) has a lower intensity. There is

no significant difference in the line widths of the three lines: the full width at half-

maximum of a Lorentzian line fit was ACO~,2 = 35 Hz for all three lines. To investigate

this behavior in more detail, we have performed cross-polarization contact-time

dependence measurements as well as rotating-frame relaxation time measurements for the

three silicon sites.

4.1 Previous Studies of Cross Polarization Involving Quadrupolar Nuclei

Cross polarization to and from quadrupolar nuclei is becoming an increasingly

popular technique. Although cross polarization under static conditions is easier to achieve

and interpret, 135the ubiquity of MAS probes and the development of the Multiple-

Quantum Magic-Angle Spinning technique (see Chapter 6) has made an understanding of

cross polarization to and from quadrupolar nuclei during MAS desirable. In this thesis,

.-- .%-., .,,,..--’ --- .-,.,
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we will only be concerned with the case of cross polarization to and from the central

transition of an odd-half-integer quadrupolar nucleus, although multiple-quantum” cross

pOitiZation is conceivable. 1s6>137.138

The earliest CP/MAS experiments involving quadrupolar nuclei were largely

empirical in na~re.lsg*l~)141 In 1992,’ A. J. Vega extended his quadtupolar spin-lock

theory 120(see Section 3.2) to cross polarization *2]and compared the effects of the adiabatic

and sudden regimes. He showed that cross polarization occurs continuously in the sudden

regime although only a subset of the nuclei participate. The reason for this is that

populations that were initially in a *3/2 or t5/2 state (see Figure 3.7b) are not

interconverted to the central transition by sample rotation and, therefore, cannot

participate in the cross polarization-process (although relaxation effects could, of course,

alter the populations of different states). In the adiabatic regime, population

interconversion do occur (see Figure 3.7a), permitting cross polarization from spin-1/2

T2m T20 T1m

1 I l“’’I’’’ [l’’’’ l’’’’ l’’” l’”
-90 -100 -110

8 [ppm]

Figure 4.1- One-dimensional 29Si spectrum of low albite obtained with cross polarization
from 27A]. The crystallographic sites are indicated at the three different peaks. The peak
at S = -91.8 ppm shows the lowest intensity although this silicon site has two nearest-
neighbor aluminum atoms. The other two lines at 6 = -96.1 ppm and 6 = -103.9 ppm
have roughly the same intensity.
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nuclei to a larger fraction of the quadrupolar spins. When cross polarizing from

quadrupolar to spin-1/2 nuclei, however, the preparatory pulse will just excite populations

that are initially in the central transition so these spins are the only ones which can

participate. Since Vega’s work, more applications of cross polarization from quadrupolar

nuclei have appeared in the literature. *~’142’14311a1145 Although some of these papers

included studies of the cross-polarization dynamics, erroneous assumptions were made in

a few instances. In particular, simplifications which were incompatible with measured

values were used in models of cross-pokirization dynamics.lw

Due to the inefficiency of spin locking and cross polarizing quadrupolar nuclei

under MAS conditions, angle-reorientation experiments are desirable. Such experiments

take advantage of the fact that when the rotor axis is parallel to the B. field, time-

dependent terms in the Hamiltonian vanish (see Section 1.4.1) which leads to cross

polarization that is as efficient as in a static sample. Such experiments have been

successfully performed, 122’1~and their advantages and disadvantages as compared to the

MAS experiment will be discussed below (see Section 4.5)

4.2 Experimental Parameters

All cross-polarization experiments were performed on a Chemagnetics CMX-500

spectrometer operating at a proton Larmor frequency of 500.1 MHz. The 27AI frequency

was 130.31 MHz; the 23Na frequency was 132.28 MHz; and the 29Si frequency was 99.34

MHz.

Figure 4.2 shows the circuit diagram for the home-built double-resonance MAS

probe used in these experiments. The probe incorporated a Chemagnetics “jumbo”

spinning module with 14 mm outer diameter zirconia rotors. The volume of the rotors was

approximately 2.8 mL. The spinning speed was controlled by a home-built spinning-

speed controller to an accuracy of H Hz. An MAS speed of 2400 Hz was used for all CP

experiments and silicon TIP measurements described in this section. Typically, a 10-17 ps

pulse was used for selective excitation of the central transition of aluminum. The cross

polarization was optimized experimentally based on the spin-lock efficiency for the

central transition of the quadrupolar nucleus as a function of the rf-field strength. At

Or/ (2Z) = 2400 Hz, the best spin-lock level for the 27A1 resonance was found to be

..:, ,,:<;. ,--.,..<-<.,..,,. . .... ~t: ,p;.7 $-,, -,.,.
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Al
(99.34 MHz) O

coil
(130.31 1 MHz)

C*

Cl= C2= 0.8-10 pF (polyflon@NRP-vc-10-12)

C3 = CA= C5 = 5-25 pF (Polyflorf’ NRP-VC-25-6B)

C6 = 0.8-1 OpF (vottronics” v2102)

C,= 2.2 pF (ATC~

C8 = 1.1 pF (ATC~

L,= 0.11 pH (0.05” diameter round wire; 5.5 turn coil with L=O.56”,W=O.32”)

L2= 0.23 p.H (0.05’’xo.o5°square wire; 6.5 turn coil with L=O.50”,W=O.38”)

coil = 0.26 p.H (0.05’’xo.o5°square wire; 5 turn coil with 16 mm inner diameter

and L=20 mm)

Figure 4.2- Circuit diagram for the home-built double-resonance probe used in these
experiments. The circuit is based on the “lumped-element” design of Doty et al.91except
tunable traps are used on both channels. The impedances are estimated using the coil
formula12*’146which neglects the effects of wire thickness and wire shape. At the power
levels used for the CP experiments in this thesis, better than 40 dB isolation is observed on
each channel.
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01/ (2n) = 500 Hz, which agrees well with the simulations of Figure 3.9b. The cross-

polarization sequence used in these experiments incorporates spin-temperature

alternation .47 For the contact-time dependence study, cross-polarization signal intensities

were measured for contact times (zcp) between 0.5 ms and 500 ms. For these

measurements, 128 scans of 1024 data points were summed with a recycle delay of 5 s.

Sixteen dummy scans preceded the collection of data. The silicon rotating-frame

relaxation times (Tlp) were measured using the same parameters as for the CP time-

dependence studies but adding a spin-lock period after the CP contact time (Figure 4.3).

On-resonance measurements were made for each site in both the CP dynamics a,,d silicon

T1~ experiments to eliminate offset effects that are expected to occur at such low rf-power

levels.

4.3 Hartmann-Hahn Matching for Quadrupolar Nuclei

Cross polarization is a process by which magnetization is transferred from one

spin species to another. In solids, this typically occurs through the dipolar Hamiltonian

although in some cases it can also occur through scalar J couplings. 147The basic types of

cross polarization that have been developed so far are based on either adiabatic

demagnetization or spin locking;7 only the second case will be discussed in this thesis.

To perform Hartmann-Hahnl]l cross polarization, each spin species is subjected to

rf irradiation in the form of a spin-lock field, and the amplitudes of these spin-lock fields

are adjusted to permit energy-conserving magnetization transfer between the two types of

spins. Mathematically, this can be described as follows.

27AI

29si I . . I I

Figure 4.3- Pulse sequence for measuring 29SiTlpvalues a’sdescribed in the text.
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The Hamiltonian for cross polarization from many spins of type S to a single spin

of type I is given (in the doubly rotating frame) by*48”qg

~= ~fiAOI@z + @s& +fiAo++ + ficoJx +
k k

+ ‘i~beff, SJ (2sk~I~)
k

+ h Z beff, SjS~[
2s sj. kz - ~ (Sj+sk. + ‘j.sk+)

j>k
1

(4. 1)

where the effective dipolar coupling constants have the form (see Equations (1.68) and

(1.71))

(4.2)

For the static case, R;, will simply be proportional to the second-rank Legendre

polynomial of the cosine’of the angle between the dipolar vector and the B. field while in

the MAS case, it will contain terms that oscillate with COrand 20), (see Equation (1.109))

b
MAS
eff, SjSk =-{(9’’’’”}

jk

(4.3)

Note that the choice of labels “I” and “S” in Equation (4.1) differs from the conventional

usage but is consistent with the notation used in Chapter 3.

For the case of on-resonance imadlation on both channels where

m 1S ‘> beff, SjSk>lbeff, S~I and O.)ll ‘> beff, SkI ‘ it is convenient to used a “tilted”

(k ‘Y+lY) ‘see Section
interaction frame which corresponds a rotation of z/2 about ~S

1.1.2)148
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Y-/i”= fim,,~Skz+fio,,Iz +~b.,,,skI 2%.1.
k

‘~fi ~ beff, SjS, [ ,. ~. - ~ (Sj+sk. + ‘j-Sk+)2s. s 1
j>k

[
~ S S + sj-sk-) .+ ~h .x beff, SJS~ z ( j+ k+ 1

J>k

(4.4)

The last term in Equation (4.4) is non-secular and can usually be ignored. In this tilted

frame, the direction of the spin lock on nucleus of a given type provides the axis of

quantization for that nucleus.

For the moment, let us assume that all homonuclear dipolar couplings between the

S-spins can be ignored. (Their effects will be reintroduced below.) What we would like to

see is how polarization can be transferred between the S and I spins. Clearly, the third

term on the right-hand side of Equation (4.4) is what couples the two species. Using

Equations (1.52) and (1.53), it can be rewritten as

xb zeff s, I 2SkXIX = beff, S,1{~ (sk+l- + ‘k-l+) + ~ (S~+I+ + Sk-I-) } . (4.5)JL
k

k.

Equation (4.5) contains two terms that can potentially be used for polarization transfer

between the S and I spin systems: (1) a zero-quantum or “flip-floP” term ( Sk+I. + Sk-I+)

in which one spin flips down while the other flips up and (2) a double-quantum or “flop-

flop” term (Sk+l+ + Sk-I-) in which either both SPins flip up or both sPins fliP down.

If a quantum of S-spin magnetization equaled a quantum of I-spin magnetization,

the “flip-flop” term would provide an energy-conserving mechanism for polarization

transfer. Although the gyromagnetic ratios of different types of nuclei are not equal, it is

possible to create a situation in which the quanta are the same by a judicious choice of rf-

field strengths. According to Hartmann and Hahn,ll’ transfer of polarization between two

different types of nuclei in a static sample can occur if the rf-amplitudes are matched

according to the condition

~1(1+1) –mI(mI–l) -lal Il = JS(S+l) –ms(m~–1) “l@lsl (4.6)

,,:.;, , , .,;+..?,y, >:-:,..,.. .
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where col~ = ‘YIBll~ ‘1s = –YsB ~s, and the transitions being matched are between

quantum levelsm~ (m–1) foreach nucleus. For two spin-1/2 nuclei, Equation (4.6)

reduces to

QUI = @ls (4.7)

while when polarization is transferred between a spin-1/2 nucleus (I) and the central

transition of a half-integer quadrupolar nucleus (S), Equation (4.6) simplifies to

(4.8)

Typically, the double-quantum term in Equation (4.5) ‘is ignored since it is non-

secular although in the case of small rf fields and high spinning speeds, energy-conserving

double-quantum cross polarization can occur between two spin- 1/2 nuclei.150 However, it

is interesting to note that because 29Si has a negative gyromagnetic ratio while 27A1 has a

positive one, the relevant term in the dipolar Hamiltonian for 27A1-to-29Si cross

polarization is actually the “jlop--op” term. That is, the energy-conserving transition

corresponds to one in which both spins flip the same way simultaneously (see Figure 4.4).

yCJiCO

‘lAl’

●

● ✌

●

mA,=+$hitM
●

●

✎

iU!.ULm~i.-l
2

‘lSi

EA[=-hTlAl(3y@lAl) &i=-fimsi(’YsiBl si)

Figure 4.4- Schematic of cross polarization from the central transition of 27A1to 29Si at
the Hartmann-Hahn match. The opposite signs of the gyromagnetic ratios of the two spins
causes the energy-conserving transition to be the “flop-flop” transition (e.g. - both spins
change from spin up to spin down).
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This is merely a technicality, however, and the general concepts that have been developed

for cross polarization between spins with positive gyromagnetic ratios will be applicable

here.

When more than one nucleus of a given type is present in a sample, homonuclear

dipolar couplings (the fourth term on the right-hand side of Equation (4.4)) will modify

the effective spin-lock field felt by a given S spin, and, therefore, a slightly different spin-

lock field strength (CO1l)will be required to match it. This leads to a broadening of the

match condition of Equation (4.6) as depicted

number of crystallite fulfilling a given match

a)

schematically in Figure 4.5a. Here, the

condition is plotted as a function of the

I I 1 1 I o 1 1 i

o
offset from H-H match

b)

n=-1 n=O n=+l
n=-2

I I I 1 I I o I 1

0 offset from H-H match

Figure 4.5- (a) Schematic of the match condition for the static and “slow” spinning cases
(a), <<a)d) . Intensities are plotted as a function of Hartmann-Hahn mismatch.

Homonuclear dipolar couplings lead to a distribution of match conditions for different
crystallite, centered about the Hartmann-Hahn match condition. (b) Schematic of the
Hartmann-Hahn match condition for the “fast” spinning case (to,>>(ad) . The match
condition is split into sidebands spaced by or
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deviation from the exact Hartmann-Hahn match:

~(l+l)-mI(mI-l) “l@lI1-~S (S+l)-ms(ms-l) -l~lsl. Typical

distributions for a static powder sample are symmetric and approximately Gaussian.

Magic-angle spinning further modifies the Hartmann-Hahn match condition. For

the case of transfer between two spin-1/2 nuclei, it has been shown 921150that when the rate

of rotation, mP equals or exceeds the strength of the homonuclear dipolar couplings, @&

the match condition of Equation (4.7) splits into distinct sidebands

*1 I = ‘IS ‘nor (4.9)

where n is an integer (see Figure 4.5 b). These sidebands are a consequence of the fact that

magic-angle spinning (see Equation (4.3)) makes the heteronuclear dipolar Hamiltonian

time-dependent. Transforming Equation (4.4) to an interaction representation using
-inrOrtSZ

R=e (see Equation (1.26)) and neglecting the time-dependent terms gives

where the homonuclear couplings have been ignored. For positive gyromagnetic ratios, it

is clear that the match condition of Equation (4.9) permits energy-conserving

magnetization transfer to occur via the Hamiltonian of Equation (4.10). To first order,

Equation (4. 10) is only valid for n = ~ 1, AZ; thus, at short contact times the most

efficient polarization transfer will occur for these. At longer contact times, however,

equally efficient transfer occurs for the centerband due to higher-order processes, and less

efficient transfer occurs for lnl >2.150’151 J cross polarization can also potentially

contribute to the centerband signal.147 As in the static case, the match conditions are

broadened due to homonuclear couplings (see Figure 4.5) although the extent of

broadening is reduced due to partial averaging by the sample spinning.92

An analogous modification of the static cross-polarization condition has been

proposed for transfer between a spin-1/2 nucleus and the central transition of a half-

integer quadrupolar nucleus under MAS *21
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@l II = (S+ 1/2) lcol~l+ncor (4.11)

and has been observed experimentally. ‘N Compared to the aluminum homonuclear

dipolar couplings in low albite (i)~/ (2x) = 200 Hz, a speed of 2400 Hz is in the “fast”

spinning limit. Therefore, the match condition is expected to split into sidebands under

our experimental conditions.

An additional complication occurs when ncor is larger than the rf-field strength.

This is depicted schematically in Figure 4.6 for the experimental conditions of Section 4.2.

In these experiments the aluminum field strength was mls/ (2n) = 500 Hz, and the.

spinning speed was COr/(27c) = 2400 Hz. From Equation (4. 11), the centerband for

29Si would be expected at a silicon field strength ofcross polarization from 27A1 to

61,1/(2@ = 1500 Hz, the first positive (n = +1) sideband at CO1l/(2x) = 3900 HZ,

a)
n=-3 n=-2 n=-1 n=O n=+l n=+2 n=+3

-5}00 -3bO0 -dOO 1 kOO 3bO0 6/300 8}00

$#Hz]

b) n=O n~+l n=+2 n=+3

dvL
nK

I
-5}00 -3!300 -900 1kOO 3600 6!300 8+00

Figure 4.6- Schematic of match conditions for our experiments as a function of the spin-
lock field strength on 29Si. (a) Hypothetical sideband positions based on Equation (4.11).
(b) Folding-back of sidebands with negative intensity.
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the second positive (n = +2) sideband at mlI/ (2z) = 6300 Hz, etc. However, the

n =–landn= –2 sidebands would be expected at negative field strengths (Figure

4.6a), which seems unphysical. Actually, a change in the sign of the field strength simply

corresponds to a change in the direction of the quantization axis of one of the spins (i.e. - a

shift from double-quantum to zero-quantum cross polarization).]so By using the

Hamiltonian of Equation (4.10) and projecting the initial density matrix onto the Zeeman

terms of this Hamiltonian, the final density matrix can be approximated. 150From this, one

can determine that the cross-polarized signal in the vicinity of the Hartmann-Hahn match

. condition will have the following dependence on the spin-lock amplitudes

N [(S+ 1/2) lcol~l +ncor] . (1~~11)
(Iz) cc

N[ (S+ l/2)lcol~l +n@J2+ (ICD111)2’
(4.12)

The denominator in Equation (4.12) will always be positive, but the numerator will

change sign depending on the relative magnitudes of (S + 1/2) @l~ and or This

translates into a change in sign of the intensity of the cross-polarized signal. Thus,

sidebands corresponding to negative values of ml ~ will be folded back around the

frequency 031~/ (2~) = o HZ and will appe~ at 1~111

match condition spectrum (Figure 4.6b). 150

Figure 4.7 shows the experimentally measured

with negative intensity

intensity of the signal

in the

cross-

polarized from 27AI to one of the 29Si peaks in low albite as a function of the magnitude of

the 2gSi rf field strength, 0.)11/(2~),for cross-polarization contact times of ‘cCp= 10, 50, and

750 ms. The experiments agree reasonably well with the predicted match condition

profile sketched in Figure 4.6b; however, the precise positions of the centerband and

sidebands are difficult to determine due to both the partial overlap of positive and negative

sidebands and the difficulty of measuring low field strengths accurately. All three peaks

show similar behavior although the maxima are shifted since the offset is of the same

27AI spin-lock field. The relative intensities of all sidebandsorder of magnitude as the

remained the same (within experimental error) for contact times ranging between 10 ms

and 750 ms.
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The interference between different sideband matching conditions as seen in Figure

4.7 illustrates a second important consideration in setting up cross-polarization

experiments involving half-integer quadrupolar nuclei at low rf powers. In addition to

optimizing the quadrupolar spin-lock efficiency for a given spinning speed (as described

in Chapter 3), one must make sure that the chosen spin-lock field strength and spinning

speed create at least some sidebands of the match condition which do not interfere

profoundly with other sidebands. Although the criteria for selecting efficient quadrupolar

spin-lock field strengths eliminate some of the cases with the most destructive

interference, there are other values of mls and COrwhich give a good spin Ioc!: for the

quadrupolar nucleus but for which the interference between the cross-polarization match

sidebands would be severe.

Furthermore, or must be kept very stable since any change in the spinning speed

will shift the positions of the folded-back sidebands and thereby alter the intensity of the

cross-pohuized signal (possibly even changing its sign). For our experimental parameters,

slight changes in the spinning speed Ied to profound changes in the cross-polarized

L’ 1 “m” I 1 I I -1

1
0

00

0
&AAA00

A
~o

A~CP=lOrnS

o TCp =50 ms
v Tcp = 750 ms

~ I IA ho
.-
Cn

s 0.0$
s—

v:

‘m

I I I I I
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Figure 4.7- Intensity of signal cross-polarized from “Al to the Q4(2AI) 29Si site in low
albite. The pattern of matching condition sidebands agrees qualitatively with the expected
pattern (see Figure 4.6b).
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intensities. The intensity of the peak at -91.8 ppm decreased by 3470 when the spinning

speed was changed from 2400 Hz to 2300 Hz. Only a 2% decrease would be expected

from varying the MAS rate alone (see Section 1.4.1); the rest must be a consequence of

changes in the match condition. Even spinning-speed fluctuations of 10 Hz produced

noticeable effects.

For both the CP contact-time dependence experiments and the silicon TIP

measurements, the centerband match condition was used. This match condition had

relatively little overlap with the folded sidebands for the chosen values of COlSand Or ~

Figure 4.7 shows. Nc% that the centerband match signal may contain both high-order

dipolar and J contributions; no attempt was made to distinguish between the two effects.

4.4 Cross-Polarization Dynamics for Quadrupolar Nuclei

29Si magnetization, theIn order to analyze the CP contact-time dependence of the

rotating-frame relaxation rate constants for all three silicon sites were measured on-

resonance at the rf-field strength used for the cross-polarization experiments. Eight

different time points from %~~ = 500 ms to ‘c~~ = 6 s were measured four times each

and fitted to a monoexponential decay as shown in Figure 4.8. The relaxation times that

were obtained are: TIP(5 = –91.8 ppm) =5.8 t 0.2 s, TIP(6 = –96.1 ppm) = 12.8 A 1.1 s,

and Tl ~(~ = –103.9 ppm) = 11.5 * 0.7 s. It is interesting to see that the silicon site with

two aluminum nearest neighbors has a TIP of only one-half the value of that for the silicon

sites with only one aluminum nearest neighbor. This proportionality between the rate

constant and the number of nearest neighbors suggests that the main relaxation pathway

involves the aluminum atoms.

Figure 4.9 shows the cross-polarization intensity as a function of contact time for

all three silicon sites. The measurements were done as three separate on-resonance

measurements to avoid resonance-offset effects due to the low spin-lock field strengths.

The most remarkable feature of these measurements is that the maximum polarization

reached for the site with two aluminum nearest neighbors is lower than the maximum

intensities of the two silicon sites with one aluminum nearest neighbor. The contact time

dependence were fit to a simple model based on the so-called “thermodynamic”

description of cross polarization described by Mehring? In this model (depicted
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schematically in Figure 4.10), the magnetization of a given spin species is parametrized

in terms of a spin temperature. These species then interact with each other and with a

“lattice” of other degrees of freedom according to first-order kinetic equations, subject to

.
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T~L [s]

29Si sites in IOW albite. The error barsFigure 4.8 - 29Si T1~ measurements for the
represent the standard deviation of four independent measurements, The solid lines are
the best fits to the data points corresponding to T1~ values of (a) TIP(6=-9 1.8 ppm) = 5.8 *
0.2 S, (b) T1P(6=-96.1 ppm) = 12.8 * 1.1 s, and (c) TIP05=-103.9 ppm) = 11.5* 0-7 S.
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Figure 4.9- Cross-polarization time dependence for the three different crystallographic
silicon sites in low albite: (a) the Q4(2A1)site at 6=-91.8 ppm, (b) and (c) the Q4(1AI) sites
at 6=-96.1 ppm and 5=-103.9 ppm, respectively. The fits through the experimental points
are based on Equation (4.34) and the parameters extracted from the fit are summarized in
Table 4.1.
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the constraints imposed by the initial conditions and the law of conservation of energy.

This simple model makes no assumptions about whether the mechanism for magnetization

transfer is based on the dipolar-coupling” interaction, the scalar-coupling interaction, or

both. The derivation follows.

The quantum-mechanical definition of magnetization for NI spins of type I is given

by5

where the

(1.16) and

N,

{}
(Mz) = fiYITr P ~ Ii, z

iel
(4.13)

density matrix in the high-temperature approximation is given by Equation

the Zeeman Hamiltonian is

(4.14)
i=]

Here we have used BZ to indicate the magnetic field along which the spins are quantized.

This may or may not be equal to the static field (Bo) depending on the frame of reference.

If the spins are assumed to be non-interacting (the validity of this approximation will be

discussed below), Equation (4. 13) can be written as N1 multiplied by the magnetic

moment of a single spin

T

1 CP
27A~ spins q

4

29Si spins

PAl P Si

~Tlp(Al)

I Lattice ~lx I
Figure 4.10 - Schematic of the phenomenological “thermodynamic” model of cross
polarization which considers that each spin species can be described by a “spin
temperature” and that both cross relaxation and relaxation to the ‘lattice” can be described
by first-order kinetic equations.

-, . <:,,,’... .
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(M) = NIWITr {PIZ} (4.15)

where the Zeeman Hamiltonian for a single spin (Equation (1.48)) is used in the density

matrix. Substitution of Equations (1.16) and (1.48) into Equation (4.15) gives

[
Tr {Iz} + Tr {fiYIBZI~}

(Mz) = NIfiyI .
1

z
(4. 16)

where Z is the partition function (Equation (1.15)). The trace of the IZ operator vanishes,

and Equation (4. 16) can therefore be written as

(Mz) = PICIBZ (4.17)

where the inverse spin temperature for the I spins is defined as

(4. 18)

The magnetization obeys the Curie law since it is inversely proportional to temperature,

and C1 is known as the Curie constant.

The Curie constant can be defined in terms of the following two functions

F(I) =+= Tr; l} = 1
(21+ 1)

(4.19)

and

I I
G(I) =Tr{I~} = ~ m2 =2~m2 =1(1+ 1)~21 +1). (4.20)

MH.1 Mel

By comparison of Equations (4.16) and (4.17), one can show that the Curie constant is

given by

C1= NIhy:F (I) G (1) . (4.2 1)
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For spin-1/2 nuclei, CI is evaluated by direct substitution of 1=1/2 into Equations (4.19)

and (4.20). For cross polarization involving the central transition of a spin-1/2 nucleus, a

modification must be made. 135

To understand the nature of this modification, one must consider what effect

selective excitation has on the density matrix. The equilibrium density operator for a spin-

5/2 nucleus in the lab frame is proportional to the IZoperator and has the matrix form

500000
030000

001000

1000-10 0 “
(4.22)

[

0000-30

10000 0-5

Application of a selective 90° pulse along the y-axis will only affect the central transition.

If the phase of this pulse and the receiver are alternated by 180° between scans,” the

residual z-magnetization will be cancelled out and the density matrix during the spin lock

can be approximated by a fictitious spin-1/2 operator on the central transition (see Section

1.2.5).120 Switching to the “doubly rotating tilted frame’’152 in which the axis of

quantization is along the effective field formed by the spin-lock field and the offset (see

Figure 4.11 ) gives the matrix

~(~:; tilt, ~ ~
1000000

000000
001000 (4.23)
000-100 -

K&l
Equation (4.23), not (4.22), is the form of the density matrix that must be substituted into

Equation (4. 15). It is effectively a spin-1/2 system which means that I= 1/2 is that value

that must be substituted into the equation for G(I) (Equation (4.20)). However, the

dimensionality of the matrix is still that of a spin-5/2 system so 1=5/2 must be substituted

into the equation for F(I) (Equation (4. 19)). This gives a Curie constant of
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(4.24)

for the selectively excited aluminum atoms and a Curie constant of

Nfqf
C1= NIfiy; . F (1=1/2) “G (1=1/2) = ~ (4.25)

for the silicon atoms during our cross-polarization experiments.

With this modification in mind, we can follow Mehring’s treatment and address the

dynamics of the cross-polarization process. The equilibrium aluminum magnetization on

the central transition is given by

O’Qeq= PJt=+c++)

z

(4.26)

. . . . . . . . . . . . . . . . .

A(DS

\
x’

tanfj (s+l/2)@1~s= A(J)s

Figure 4.11- Schematic of the doubly rotating tilted frame from the point of view of the S
spins. (The I spin case is analogous.) The S spins see a coordinate system that rotates at
the S-spin Larrnor frequency while the I spins see a coordinate system that rotates at the I-
spin Larrnor frequency. Thus, only offset terms remain along the z axis. The coordinate
system is then “tilted” (by angles of es and 61 for the S and I spins, respectively) so that
the effective field in the rotating frame defines a new z axis. For on-resonance irradiation,
the tilting angle is 90°.152
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where Cs is given by Equation (4.24). This is the initial condition at the start of the

experiment. After a selective pulse is applied, this magnetization is rotated by 90” and

spin-locked with a field of strength B 1s. It is assumed that the pulse is short enough that

no significant change in entropy will occur during the pulse. 149Note that since this pulse

is selective, the effective field strength is actually (S+l/2)B 1s.27 Since the B Is field is

much smaller than the B. field, a non-equilibrium situation exists. The origin of the time

axis is chosen to be the point at which the spin-lock field is turned on. The inverse spin

temperature at the start of the spin lock can be found by equating the magnetizations and

solving for ~S(t=O)

(Ms(t=O)) = (M&

ps(t=o)c~ ( (s + 1/2) B~s) = Ps(t=’=)csBo

p@l) = ‘o . p&O).
(S+l/2)Bl~

(4.27)

From the form of Equation (4.27), one can see that the spins are cooled by the spin-

locking process. They will, therefore, relax back to the lattice with a time constant T ~~).

The Hartmann-Hahn match condition, however, has provided another relaxation

pathway: the energy-conserving flip-flop transitions of Equation (4.5). In this

phenomenological approach, it is assumed that the rate at which these transitions occur

can be described by a cross relaxation rate constant, TCP The cross relaxation is

constrained by the requirement of conservation of energy

d(Es) d(EI) o
— .

dt ‘dt=”
(4.28)

Using the Curie law definition of magnetization (Equation (4.17)), Equation (4.28)

becomes

d(-f$Cs ((S+ l/’2)Bls)2) +d(-~ICI ((I+ l/2) BlI)2) = o

dt dt
(4.29)
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where a generalized version of the Hartmann-Hahn condition has been used to describe

the effective applied field strengths. Substitution of the Curie constants gives

where

(S+ l/2)NI
L

= (1+1/2)Ns”

(4.30)

(4.31)

When the Hartmann-Hahn match condition is met, the term in parentheses in Equation

(4.30) equals one.

Using the constraint of Equation (4.30), one can write first-order rate equations

that describe the cross polarization process

(4.32)

where kl and ks are the relaxation rate constants for the I and S spins respectively and kS1

is the cross-polarization rate constant. Using the initial conditions of

pi(o) = o
(4.33)

P@) = so

where SOis a constant representing the initial S-spin magnetization (see Equation (4.27)),

one can solve Equation (4.32) to obtain the following equation for the intensity of the I

spin as a function of contact time

SJ3SI -(k~+kl+k~l(l+~)-W)~Cp/2
KTCP)= ~” [e

-(k~+kl +k~I(l+A)+W)~cP/2
–e 1

(4.34)

where
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W = ~(k~-kl-k~I(l -A.) ’)+4k&. (4.35)

Note that Equation (4.34) does not make any simplifying assumptions about the

relative magnitudes of the different parameters. Although in our case kl is several orders

of magnitude smaller than ks and ksr, we chose not to make any approximations based on

this fact since kl could be independently and directly measured. It is also important to

realize that assumptions which may be valid for systems with an abundance of protons

(such as the assumption that L is small) will often not be appropriate for systems that do

not contain protons. Unwarranted simplifications have been made in the literature134 and

may have led to incorrect conclusions.

This phenomenological theory of cross polarization has several limitations. It

assumes that a common spin temperature is rapidly reached among spins of a given type

even though this may not be true for a system of dilute spins with a small gyromagnetic

ratio (where heteronuclear and homonuclear couplings are of the same magnitude). 1J8

Thermodynamics also cannot be rigorously applied to isolated pairs of spins. Another

problem with the phenomenological approach is that it incorrectly describes the behavior

of the system when the spin-lock amplitudes are mismatched. 149 A more rigorous

treatment of cross polarization 148’149has shown that, due to quantum-mechanical

constraints, a system will often not reach its true equilibrium state but rather a metastable

quasi-equilibrium. The quasi-equilibrium approach provides a more accurate description

of cross polarization under mismatched conditions and predicts a broadened match

condition (see Figure 4.5a) although the predicted lineshape is Lorentzian rather than the

Gaussian typically observed. The quasi-equilibrium approach does not address cross-

polarization dynamics, however. Still another concern (particular to our situation) is that

the fictitious spin- 1/2 approximation may break down for quadrupolar nuclei.

Despite its deficiencies, the phenomenological model has been widely applied with

some degree of success to studies of CP dynamics at the Hartmann-Hahn match which

leads us to consider it here. An important caveat is that parameters extracted from this

model should not be viewed as true thermodynamic variables but as dependent in some

(unspecified) way on the experimental conditions.
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Equation (4.34) can now be compared with the experimentally measured curves

for cross polarization dynamics from 27Al to 29Si in low albite. For the silicon sites with

one aluminum nearest neighbor, L is equal to 3 (see Equation (4.31)) while for the silicon

site with two aluminum nearest neighbors, k equals 3/2. Although most of the intensity in

the 29Si MAS spectrum of low albite at COr/(27c) = 2400 Hz is concentrated in the

centerbands, a few low-intensity sidebands are present for each site. Thus, a small

correction factor, ~, is included for each site so that the centerband intensities can be

directly compared. ~ represents the fraction of the total intensity of a given site that is in

the centerband. Because the principal values of the 29Si ~hernical shielding tensors in low

albite are known (see Chapter 5),153&can be calculated. At cor/ (2n) = 2400 HZ, ~ is

equal to 0.76, 0.83, and 0.81 for the 5 = –91.8 pprn, 6 = –96. 1 ppm, and

6 = –103.9 ppm sites respectively. These values are quite similar to each other and

show that for our case, this is indeed a small correction. However, for slowly-spun

samples that contain sites with vastly different chemical-shielding anisotropies, the

differences in& would be significant.

To determine the cross-polarization time dependence, the measured values (see

Figure 4.8) of the silicon rotating-frame relaxation times (kI = 1/T$~ ) were used! and

three-parameter fits were performed to extract values for So, ks, and kS1. The results of the

best fits are summarized in Table 4.1. The rate constants for the cross-polarization process

Isotropic Shift kI=l/TIPm k~=l/TIP@l kSI=l/Tcp
so

[ppd [S-l]a [s-1] [s-1]

-91.8 0.17 45 2.8 17

-96.1 0.08 29 2.2 22

-103.9 0.09 33 2.4 25

Table4.1- Parametersfromcross-polarizationtime-dependencefits

a. TIP(1)’sfor silicon were measured by independent experiments and used as fixed parameters.

are, as expected,

aluminum atoms

all in the same range since the distances to the nearest-neighbor

are very similar (see Table 3.1). However, the initial S-spin

126



magnetizations and the aluminum relaxation rate constants show a rather large and

unexpected variation. Since there is only one aluminum site, one would expect to obtain

similar values for these two parameters.

Although there is only one crystallographic aluminum site in low albite, it is

conceivable that there could be different T1~ relaxation rates for aluminum atoms in

different magnetic environments. Figure 4.12a shows a schematic view of the two

possible environments, an S21 system (for Q4(2A1) sites) and an S1 system (for Q4( lA1)

sites). To determine if the magnetic environments were a significant factor, aluminum T1p

a)

\/\/
Si Si

/ \

%

Al Si

\ Si

/s’\
Si Si

Q4(IAI)

,, ‘( ,Si

Si Si

/
~% Al Al

\ /
,Si, ,s~

Q4(2AI)

b)““~
Figure 4.12- (a) Possible magnetic environments in low albite. (b) Pulse sequence for
indirect 27AI TI measurement. A spin-lock on the 27A1 channel is followed by cross

$9polarization to Si to separately measure the TIP’s of aluminum atoms in different
magnetic environments.

. ...,. ,$,,/, ~ - ,--- “ ..-.: ~-
.:; .’.: “
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values were measured indirectly using to the pulse sequence of Figure 4. 12b. The results

of such measurements are shown in Figure 4.13. The fast-decaying portion of the

biexponential (see Section 3.4) could not be reliably measured due to the finite rise time of

the pulse on the 29Si channel, but the slow time constants are the same for all three sites to

within experimental error. Variations in aluminum TIP

reason for the low intensity of the Q4(2Al) site. “

Another potential method for deconvolving the

values are, therefore, not the

rate parameters would be to

perform “drain” experiments as a function of contact time.14s*154Such experiments would
.

consist of two parts: (a) Hartmann-Hahn cross polarization from 29Si to 27A1 followed by

29Si spins followed by detectiondetection of the 2gSi FID, and (b) a spin-lock only on the

27AI spins during part (a) wouldof the 29Si FID. Phase modulation of the spin lock on the

prevent 27A1-to-29Si polarization transfer and eliminate the effect of the 27A1 T1~ on the

signal. Taking the difference between experiments (b) and (a) and normalizing to

experiment (b) would give a signal with an intensity that depends only on L and Tcp A

1.00

0.80

0.60

0.40

0.20

I I I 1 1 1 1 I I I I 1 I 1 i I I
I i

tL -1

0.001
t I I I I 8 I I 1 t I I 1 I I I I I

0.00 0.02 0.04 0.06 0.08

zs~ [s]

Figure 4.13- Indirect TIP measurements for the aluminum atoms near the three different
silicon sites in low albite. The circles correspond to the &-91.8 ppm site; the diamonds
correspond to the 6=-96.1 ppm site; and the squares correspond to the 8=-103.9 ppm site.
To within the accuracy of the measurement, the slow time constants are the same in all
threecases.
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single-parameter fit could therefore be used, permitting a more reliable determination of

TCP Unfortunately, the long TI of the 29Si spins makes 29Si-to-27Al cross polarization

impractical.

To determine how sensitive the contact-time-dependence fits are to the parameters,

Equation (4.34) was used to generate simulated curves for several sets of parameters.

Specifically, pairs of curves with identical values of SO and ks (the mean values of those

listed in Table 4. 1) were generated for k=3/2 (the Q4(2A1) site) and for b3 (the Q4( lA1)

sites). The other parameters were varied but were constrained to have the same order of

magnitude as the values in Table 4.1. A few of these curves are plotted in Figure 4.14a-d

with the dotted lines corresponding to the Q4(2AI) site and the solid lines corresponding to

one of the Q4( 1Al) sites. In Figure 4.14a, the kl and kS1 values from Table 4.1 were used

(along with the appropriate values of ~), and the maximum CP intensity for the site with

two aluminum nearest neighbors was found to be higher than that for the site with one

aluminum nearest neighbor. However, the maxima of these simulated curves appeared

especially sensitive to the value of ksl. With just slight variations in the value of ksl

(Figure 4. 14b-d), the relative intensities of the Q4(2AI) and the Q4(IAI) sites changed

considerably. In most cases, they were within a few percent of each other, but sometimes

the Q4(2AI) site was more intense than the Q4( 1Al) site and other times the converse was

true. Thus, there is no simple relationship between the maximum intensity of the cross-

polarized signal and the number of nearest-neighbor aluminum atoms for the conditions of

our experiments.

In view of these simulations, our experimental observation that the maximum

intensity reached for the site with two aluminum nearest neighbors is lower than the

maximum intensities of the two silicon sites with one aluminum nearest neighbor is not

surprising and agrees qualitatively with the phenomenological theory. In fact, precise

quantitative agreement between our data and Equation (4.34) is not expected. The spin-

temperature model we have used assumes an exponential decay of the spin-locked

magnetization, but as pointed out in Chapter 3, the relaxation of 27AI in low albite is at

least biexponential. The fact that there is no simple way to incorporate biexponential

relaxation processes is one of the limitations of the phenomenological model. However,

Equation (4.34) is still a useful approximation. The values of T~~) extracted from the fits
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(see Table 4.1) all fall into the physically reasonable range of being larger than the fast-

decaying component and smaller than the slowly-decaying component of the measured

27AI in low albite (see Figure 3. 15).rotating-frame relaxation of

f

n

“o 0.5 1

0
0 0.5 1

e) 1

0
0 0.5 1

0
0 0.5 1

Tcp [s]

b)

d)

f)

()~
o 0.5 1

0 0.5 1

0 0.5 1

Figure 4.14 - Simulated cross-polarization time-dependence curves showing the
sensitivity of the relative intensities to slight variations in cross-polarization rate
constants. In all simulations, S.=21 and kS=36 S-l (the average of the values in Table 4.1)
for both curves. The dotted line represents the cross-polarized silicon intensity for a
Q4(2A1) site, and the solid line represents the cross-polarized silicon intensity for a
Q4(1AI) site. The following parameters are held constant in all simulations for the

Q4(W site (solidline):g = 0.83 kl = 0.08 S-l, ksI = 2.2 s-l, and h = 3. In all of the
simulationsfor the Q4(2A1)site (dottedline), two parametersare held constan~~ = 0.76
and kl = 0.17 s-l, and the othersvaryas follows:(a)2.= 3/2, k~I= 2.8 S-l;(b) k = 3/2, ksl
= 2.4s-1; (c) k= 3/2,ksI=2,2 S-l;(d) A= 3/2,k~I=2.0 s-l; (e) k= 2.78,ksl = 2.6 S-l;(O
k= 2.78, ksI = 2.4 S-];(g) k = 2.78,k~I= 2.2 S-’
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Cross-polarization intensities often cannot be quantitatively interpreted even for

the relatively simple case of cross polarization between two spin-1/2 nuclei. When

quadrupolar nuclei are involved, there is the additional complication that a selective pulse

on the central transition will not uniformly excite all possible crystallite orientations.

Thus, the value of 1 for the Q4(2A1) site would be expected to deviate from 3/2. As

discussed in Section 1.2.5, only 9/35 = 25.7 % of the aluminum spins are expected to be

excited by a selective pulse on the central transition. 27 From simple statistics, one can

29Si nucleus in a Q4(2AI) site has zero, one, or twocalculate the probabilities that a given

excited aluminum neighbors. Since spin-temperature altemation47 eliminates all direct

(non-cross-polarized) 29Si signal, one only needs to be concerned with the cases of one or

two excited aluminum atoms. Taking the weighted average of these two cases gives k =

2.78. While this is significantly different from the value of k = 1.5 used in the fits above,

an examination of the simulations in Figure 4. 14e-g reveals that the same general behavior

is observed, but the values of ksl are slightly shifted. Since the values of k and ksl are

highly correlated, their effects are difficult to deconvolve, and the matter was not pursued

further.

It is conceivable to correct for all these unknown scaling factors by explicitly

taking the experimental conditions into consideration and simulating the relevant part of

the spin system numerically. 151Such an approach may enable quantitative extraction of

relative intensities from cross-polarization

nuclei.

4.5 Prognosis for Cross-Polarization

Low-Rf Field Strengths

spectra involving half-integer quadrupolar

from Quadrupolar Nuclei Using

In general, the improvement in signal-to-noise ratio that can be obtained by using

cross polarization depends on two factors: (1) the gyromagnetic ratio of the two spins and

(2) their longitudinal relaxation times. The relaxation time determines how fast an

experiment can be repeated, and a shorter relaxation time has the advantage of permitting

faster signal averaging. In low albite, the signal-to-noise ratio per unit time was enhanced

by a factor of five for the 27A1-to-29Si cross-polarization experiment relative to the direct-

excitation experiment when both were optimized. The enhancement for the 23Na case was
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a factor of two (see Figure 4.15). Although in a single scan the signal obtained by cross

polarization is actually less intense than the direct-excitation signal, there is a still a gain

in the signal-to-noise ratio per unit time due to the faster repetition rate in the cross-

polarization spectrum (5s) compared to the direct-excitation spectrum (2000 s).

The cross-polarization experiment gives less signal per scan than the direct

excitation experiment because the cross-polarization efficiency for quadrupolar nuclei is

usually very low for a sample spun about an angle greater than 30” from the static field as

a consequence of the time-dependence of the first-order quadrupolar interaction .11’122

Although switched-angl” spinning experiments take advantage of the increased cross-

polarization efficiency for samples spun about an axis parallel to the static

Sinale Pulse

.I1 A 23Na-@9si

~U\ Cross Polarization

27’Al-&9si

I Cross Polarization

1 1 1111111 II II II II IIII II IIIil Ilr

-85 -90 -95 -100 -105 -110
Frequency (ppm from TMS)

magnetic

Figure 4.15- Relative intensities for constant time experiments. All three of these spectra
were acquired by signal averaging for 8000 s although the recycle delays (and, hence,
number of scans) differed from experiment to experiment due to differences in T1. (The
delays were 2000 S, 2 s, and 5 s for the 29Si, 23Na-to-29Si, and 27A1-to-29Siexperiments,
respectively.) The experiments were normalized by the square root of the number of scans
so that the noise levels were the same.
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field,122*1uthey cannot be performed on conventional MAS equipment. Furthermore, the

design of switched-angle spinning probes which are capable of spinning about an axis

parallel to the static field155$15bprecludes the use of a large volume rotor, but use of a large

rotor greatly enhances sensitivity. Thus, despite the loss in intensity per scan,

polarization from quadrupolar nuclei during MAS can still be a useful technique in

cases.

cross

man y

It is possible to enhance the cross-polarized signal further by performing a linear-

amplitude ramp during the spin lock on the spin-1/2 channel (see Figure 4.16).157’1581159

Such a ramp is typically centered at an amplitude equal to the center of one of the match

conditions (see Figure 4.5b; in our case, we used the centerband), and the amplitude is

stepped over the full width of that condition. The variation in amplitude compensates for

dipolar broadening and field inhomogeneity, permitting a larger fraction of the crystallite

in the sample to be Hartmann-Hahn matched than in the constant-amplitude case. For

sufficiently small ramp slopes, the process can be considered quasi-adiabatic. In

principle, equivalent results will be obtained regardless of whether the slope of the ramp is

positive or negative or whether the ramp is performed on the S or I channel. Our

29Si side, however, since the spinexperiments had to be performed with the ramp on the

lock on 27A1was so small. This led to an additional 40’% signal enhancement and a slight

modification of the cross-polarization parameters (see Figure 4. 17). However, the relative

heights of the three peaks did not change. More complicated amplitude-modulation

techniques have also been developed, lW’161but they require specialized hardware.

Furthermore, they are highly optimized for pairs of spin-1/2 nuclei and may not be easily

generalizable to quadrupolar systems. For these reasons, they were not pursued further.

Figure 4.16- Linear ramp sequence for enhancing cross-polarized
matching to all crystallite.

signal intensity by

-i .....-.<.., .<..- ,
.,....
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In heterogeneous samples, quantitation can be improved in some cases by

performing a chain of cross polarization steps in which the source spins are allowed to

a) 1.5 -a I 1 1 I I I I I I 8 I I 8 I 1 1 I I I i & 1 1 I I I I t

1.0:

b)
1.5

1.0

0.5

I 1 1 I I
1 I I 1 I

1 I I 1 I I t 1 I I 1 I I t I 8 I I I

-,

0.0$ ‘ t I I I t I I I I I t # I I 1 I t r I # I , I I I I 1 t 1
0.0 0.1 0.2 0.3 0.4 0.5 0.6

z~p [s]

Figure 4.17- Comparison of cross polarization dynamics for experiments performed using
a Hartmann-Hahn match (circles) and linear amplitude ramp (squares). (a) The 8=-96.1
ppm site. (b)The 8=-91.8ppm site. Althoughintensitieswereenhancedby 40% by using
the ramp, the CP dynamics were not substantially altered, and the relative intensities of the
Q4(1AI) and Q4(2AI) sites remained the same.
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relax completely between contact periods. 1621163Since such a method is not practical for

use in two-dimensional experiments, we chose not to explore it with our system.

In addition to large differences in TI times, two other conditions must be fulfilled

for cross polarization from quadrupolar nuclei to be advantageous: (1) the quadrupolar

coupling constant must be small enough to allow efficient spin lotting, and (2) the TIP

relaxation times of both spins must be long compared to the inverse of the cross-relaxation

rate constant.

a)

b) II
I I I I I

10000 5000 0 -5000 -10000

[Hz]

Figure 4.18- 29Sispectra of dehydrated zeolite Na-A. (a) Direct 29Si signal. Thirty-two
scans were recorded with a recycle delay of 20s. The broad downfield peak is due to glass
ampule in which the sample was sealed. (b) 27A1-to-29SiCP signal. 1056 scans were
recorded with a recycle delay of 0.5 s. The spectra are scaled to the same noise level to
permit a direct comparison of signal intensities.
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In samples where the spin-1/2 nucleus has a relatively short T1, cross polarization

from quadrupolar nuclei, although still possible, may not lead to a signal-to-noise

29Si spectra of dehydrated zeolite Na-A, bothenhancement. Figure 4.18 shows two

acquired with 10.7 minutes of signal averaging. The experimental parameters were

similar to those described in Section 4.2. The spectra are scaled to the same noise level,

allowing a direct comparison of signal intensities. Although the cross-polarized spectrum

29Si signal from the glass ampule, the signal-to-noise per uniteliminates the background

time is approximately the same in both cases. However, the presence of a cross-polarized

signal can be useful in heteronuclear correlation experiments even if it does not lead to

signal enhancement (as will be demonstrated in Chapter 6).
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Chapter 5: Applications of Cross Polarization from

Quadrupolar Nuclei to Aluminosilicates

An advantage of the faster repetition rate for 27A1-to-29Si cross polarization is the

increased feasibility of two-dimensional experiments since a five-fold increase in signal

enhancement corresponds to a twenty-five fold savings in time. In this chapter and the

next, we present two-dimensional experiments which demonstrate applications of cross

polarization from quadrupolar nuclei.

5.1 Isotropic-Anisatropic Correlation Spectroscopy

Due to its typical high resolution and sensitivity to local atomic environments,

solid-state 29Si NMR has been used extensively to study a wide range of materials and

. materials-related problems. Most of the chemical information obtained using 29Si NMR

has utilized the isotropic chemical shift. Through empirical relationships, information

about aluminum occupancy of next-nearest neighbor positions, Si-O-T bond angles, and

Si-O bond lengths have been obtained.llO’l~

The chemical shift is strongly dependent on the local electronic environment and

on the orientation of a crystallite relative to the static magnetic field. To fully characterize

the local atomic environment, both the isotropic and the anisotropic components of the

chemical shift need to be determined. For single crystals the complete orientation-

dependent chemical-shielding tensor can be determined by measuring NMR spectra as a

function of orientation of the crystal about three axes relative to the magnetic fieldb or by a

more efficient technique that involves the sudden reorientation of the crystal during a two-

dimensional NMR experiment. 16S’166’16TFor powders, the chemical-shielding interaction

can be determined from NMR spectra of a static or slowly rotating sample. When

multiple atomic sites are present, however, the powder patterns will often overlap,

precluding the determination of the chemical-shielding parameters from a simple one-

dimensional spectrum.

The problem of spectral overlap can be overcome by the use of two-dimensional

NMR techniques which combine the high resolution of an isotropic chemical-shift

spectrum in one dimension with the high information content but low resolution of an
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anisotropic spectrum in a second dimension. Two-dimensional isotropic-anisotropic

correlation techniques have led to the greater utilization of the anisotropic chemical shift

for the characterization of the local atomic environment, for the study of molecular

motion, and for comparisons with theoretical calculations .23

Recently, many isotropic-anisotropic correlation techniques have been developed

including: Magic-Angle Hopping (MAH),1G8 Magic-Ailgle Turning (MAT), TOSS-

reTOSS, 169 Switched-Angle Spinning (SAS),i70*17*1172Variable-Angle Correlation

Spectroscopy (VACSY),W’173experiments involving changes in the spinning speed174’175

and variations of the above. All of these techniques involve reorientation of the powder

sample either by hops between discrete positions (MAH), by sample spinning (MAT,

TOSS-reTOSS, and the variable speed techniques), or by a combination of the two

(VACSY, SAS). VACSY, SAS and the variable speed techniques will not be discussed

further in this thesis since they cannot be carried out with a conventional MAS set-up.

The Magic-Angle Hopping experiment also requires special equipment but will briefly be

mentioned because it is the conceptual predecessor of Magic-Angle Turning.

5.2 Magic-Angle Hopping

Magic-Angle Hopping (MAH)1G8>]7Cwas one of the first techniques developed to

produce isotropic-anisotropic correlation spectra. The experiment makes use of the fact

that anisotropic second-rank interactions will be averaged to zero under transformations

that have cubic (or higher) symmetry. *77 Rapid magic-angle spinning is one example of

such a transformation, but it can be shownll that three discrete 120° “hops” about the

magic-angle axis also suffice to average out the chemical-shielding anisotropy. A

derivation of this property as it applies to the MAH experiment will not be presented here,

but the same principle will be discussed in more detail in Section 5.3.1 in relation to MAT.

Figure 5.1 shows the Magic-Angle Hopping pulse sequence (with the conventional

use of the label S for the directly detected spins). The evolution period is divided into

three segments, each of which occurs at a different rotor phase angle. Z-filters4 are used to

store one component of the magnetization along the static field while the sample is
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reoriented. At the end of tl, only the isotropic part of the chemical shift remains. Two-

dimensional Fourier transformation leads to a spectrum in which isotropic shifts are

correlated with static powder patterns.

While the MAH experiment is conceptually elegant, it requires a specialized probe

design17b which, although commercially available, is not found in many NMR

laboratories. Another drawback of the experiment is that static powder patterns have poor

signal-to-noise compared to MAS sideband patterns. Both of these problems can be

circumvented by performing slow-spinning variations of the experiment.

5.3 Isotropic-Anisotropic Correlation by S1OWSpinning

The MAH pulse sequence of Figure 5.1 can, in fact, be applied to rotating samples

as was first shown by Gan. 178 In this experiment, the pulses are synchronized with the

sample rotation so that tl evolution occurs after the sample has rotated by 120°

increments. In the limit that t] is much smaller than the rotor period (requiring rotation

rates of less than 100 Hz), it is possible to view the slow-spinning experiment as an

approximation to the discrete hopping experiment.

, 90°

I

s

Figure 5.1 - The Magic-Angle Hopping experiment. The sample is static during each
portion of the evolution period. Z-filters are used to store a component of the
magnetization as the sample is reoriented by 120” about the magic-angle axis. These
positions correspond to three vertices of an octahedron. At the end of the t, period, the
chemical shift anisotropy has been averaged out.

.,. -..,
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Using such a slow spinning speed is not the best way to perform the experiment, -

however, since it leads to distorted powder patterns which are difficult to interpret. A

better approach is to spin at a fast enough rate that distinct spinning sidebands appear in

the anisotropic dimension. This will improve the signal-to-noise and, hence, the reliability

of fits of the CSA parameters. In addition, when the S-spin chemical-shielding anisotropy

is greater than the S-spin homonuclear dipolar coupling (as is the case for nuclei with low

*3C or 29Si), it will be possible togyromagnetic ratios and low natural abundance such as

choose a spinning rate that makes the sideband intensities independent of the dipolar

interaction. To theoretically describe the case where the evolution period is a significant

fraction of the rotor period, one must consider the time-dependence explicitlyll as will be

shown below (Section 5.3. 1).

The pulse sequence of Figure 5.1 is not the only possible sequence that can be used

to implement this concept. Variants using 180” pulses have been developed by Gann et

al. ’79and Hu et al. 180Collectively, these experiments are known as Magic-Angle Turning

experiments,* 11180and they will be discussed in detail in the following sections.

5.3.1 Theory of Magic-Angle ‘Iimning Experiments

To show how Magic-Angle Hopping and Magic-Angle Turning experiments lead

to an isotropic spectrum in the @l dimension, the theory behind such experiments will be

outlined. Related derivations can also be seen in the Ph.D. theses of Baltisbergerl 1 and

Gann.181

Figure 5.2 shows a schematic of a generalized MAH/MAT type of experiment. It is

not meant to represent a particular pulse sequence but will serve as a framework for the

following discussion. The periods labeled 5 will be constructively added in several of the

pulse sequences to form the evolution period, tl. (In one case,]go the evolution period is

formed slightly differently, but the same formalism can still be used.) 17represents the

number of basic building blocks (groups of pulses) used to construct the sequence, and N

and K are integers. The isotropic echo is formed at the time ~’. In the following derivation,

we will assume that the pulses are short enough relative to the rotor period that their finite

width can be neglected.
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During an MAT experiment, the magnetization evolves under the secular

chemical-shift Harniltonian (see Section 1.2.3)

HCs = f2(t)IZ (5.1)

where the time-dependent frequency of the chemical shift for a single crystallite is given

by (see Equations (1.108) and (1 .60))

(5.2)

The {Cl } are constants, and A~~ defines the orientation of the chemical shift principal

values relative to the rotor axis (via the Euler angles a Cs, PCS, and ~s). In the zeroth-

order average Hamiltonian approximation, the phase acquired during the evolution period

of an MAT pulse sequence can be determined by integrating Equation (5.2) over time and

making use of the fact that the pulse sequence contains repetitive building blocks

,

+ L ~ Cl(t)dt.

rN;r/K

(5.3)

Figure 5.2 - Generalized MAH/MAT type experiment. The basic building block is
repeated r times, and the periods 5 contribute to the evolution. N and K are integers;
restrictions on their values are described in the text.
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Here, the terms J, K, and L have been introduced to describe the effect of the pulses on the

spins since the types of pulses that are applied dictate how the phase accumulates in the

transverse plane (e.g. - a 180” pulse reverses the sign of the phase of a given crystallite]sz).

Thus, Equation (5.3) represents the combined effects of the pulse sequence on both spin

space and geometrical space.

Substituting Equations (5.2) and (1.36) into Equation (5.3) and factoring out the

m=O term gives

(NTrj/K) +~

{[~

r–l N’r,(j+l)/K

Q(z’) = ~C#::@A:: ~ J dt+K J]dt
1 j=o

NTrj/lc -( NT,j/Ic) + 6

+.L ; dt} +Zcl i e-imord::o@)A::
rN7,/K 1 m=-l; m#O

(5.4)

J~~J(N7rj~+5e-im0,tdt+J’r(jil)’Ke-imco,tdtl

‘j=OL NTrj/K (Nqj/K) + 6 J

d

J
-imwrt

+L e
}

dt .

rN7r/K

Integrating Equation (5.4) and using the fact that mr~r = 2n leads to

{ [1
imN2n jr-l __

-im6@
x [( J-K)e – J + Ke-(imN2X) ‘K]~e K

j=O
–imu~~’_ e-(imrN2?t) /K

+L(e )}.

(5.5)

For the chemical-shielding interaction, 1 can only have the values O or 2. Under MAS

conditions, d~2~ equals zero, and the m=O term in Equation (5.5) simplifies to,
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CocTi,o{1% (J - K) +
‘r:’r+’(’’-%)}

(5.6)

where the summation over j has been performed.

The remaining terms in Equation (5.5) contain the anisotropic parts of the

chemical-shielding interaction. To see how these terms can be made to vanish, it is useful

to perform the sum over j explicitly. Since it is a geometric series, it can be analytically

evaluated

imN2n jr-l __ -(imrN27t)/K
K

x( )
El–e

e
~ _ e-(imN2z)/K ““

j=O

The denominator cannot equal zero which means that

mN
# integer; m=+ 1, i2.

T

(5.7)

(5.8)

The lowest value of K for which this relation can be satisfied is K = 3; then it will hold

for all values of N that are not multiples of 3. This constrains the number of rotor cycles

over which an MAT-type experiment can be performed. All MAT sequences published to

date use K=3. Note that simihr principles have been used to remove spinning sidebands

for odd-half-integer quadrupolar nuclei although in that case five 72° rotations about the

angle 63.43” are necessary. 179

It is now necessary to consider specific details of the puIse sequences to

demonstrate how the different flavors of MAT produce isotropic spectra irl (J.)l. For the

experiment of Gan178(see Figure 5.3), the 90” pulses act as z-filters. Therefore, evolution

in the transverse plane will only occur during the periods 5 and during the acquisition.

This corresponds to the case where J=l, K=O, and L=l; thus, Equation (5.6) becomes

and the anisotropic term is given by
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-im63r6
(e – 1) (1 – e-(imrN2z)’K) + (e-’mor7’ – e-(imrN2z) ‘K) (1 – e-(imN2z) ‘K)

(5.10)
(1 - e-(imN2z)’K)

In the sequence of Figure 5.3, two blocks of pulses are applied (17=2). When the time

interval between the end of the last block and the start of acquisition is set equal to 6, one

can show (after a lot of ~lgebra) that the numerator in Equation (5.10) is zero. Thus, the

anisotropy is eliminated, and a purely isotropic echo is formed. Furthermore, it is easy to

see that Equation (5.9) reduces to COCi~O{ 3i5r} so 6 must equal tl/3.

In the experiments of Gann et al.lTg, evolution occurs in the transverse plane

throughout the entire pulse sequence. The 180° pulses will simply change the sign of the

chemical-shift Hamiltonian, corresponding to J= 1, K=- 1, and L=l. Equation (5.6),

therefore, becomes

CoCJi,o{2r5 –
?+(’’-?)}

(5.11)

From Figure 5.5, we see that r*K=3. This means that the sum in Equation (5.7) equals

zero and the anisotropic term has the form

-i mwrz’
(e - e-imN2z) (5.12)

which vanishes whenever # is an integer multiple of the rotor period. Thus, a series of

isotropic echoes spaced at integer multiples of the rotor period will be recorded during the

acquisition period.183 These are the well-known MAS rotational echoes, and when

Fourier-transformed they lead to sidebands in the frequency domain.39 The spin echo (due

to the 180” pulses) will occur when z’ = 2N7, (see Equation (5.11)) so 5 is tl/6.

The experiments of Hu et al.180need to be described somewhat differently because

of their unconventional evolution scheme. Still, the above formalism can be used if 6 is

replaced by (Nzr/6 + 8) for the positive evolution experiment (see Figure 5.7). The

accumulation of phase is described by J= 1, K=- 1, L=- 1, and Equation (5.6) becomes

co”is.{6(~+&)-%-(T’-T)}+ (5.13)
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Since r=K=3, the anisotropic terms again vanish whenever ‘r’ is an integer number of

rotor periods. The spin echo will be formed at ~’ = N’cr, and, therefore, and &=tl/6.

Clearly, isotropic echoes can be formed by all three pulse sequences. In the next

two sections we will examine experimental aspects of the techniques and compare their

performance as applied to low albite.

5.3.2 MAT with 90° Pulses

Figure 5.3 shows the first version of the MAT experiment proposed by Gan178 in

1992. The pulse sequence is identical to the MAH sequence of Figure 5.1 except that the

sample is continuously rotated rather than discretely jumped. While the sequence

successfully eliminates the anisotropy in the ml dimension (as demonstrated in the

previous section), it cannot be used to generate pure absorption-mode Iineshapes in that

dimension, despite assertions to the contrary.11’178(The earlier MAH paper1b8did not claim

to be phase-sensitive, and spectra were displayed in the absolute value mode.) The reason

that pure-phase spectra cannot be obtained can be seen by inspecting the pulse sequence

and coherence-transfer pathway shown in Figure 5.3. The 90° pulse after the second z-

filter restores both +1 and -1 quantum coherence, but the detector records only one of

I
90°

S t,
4-CP ~

k--- NT, ---k- —

3 3

p !~
-2

178Note (hat the pulse sequence fails to retainFigure 5.3- The original MAT experiment .
both the +1 and -1 coherence throughout the entire evolution period, preventing pure
absorption-phase spectra from being recorded.



them (the -1 quantum coherence in this figure). However, no pulse separates the last

portion of thetl period from the acquisition period, tz. Thus, the evolution of the+l

quantumcoherence duringthelastpart ofthetl periodis not recorded, prohibiting phase-

sensitive detection inq .4 Simply applying whole-echo acquisition to the sequence with

only 90” pulses as has been suggestedll does not alleviate this problem since a whole echo

cannot be obtained for small values of tl. It is possible to add a 180° pulse after the last

90°, however,184 in a combined hypercomplex/whole-ecilo acquisition experiment (see

Figure 1.7d). This not only produces pure-absorption Iineshapes but also can eliminate

probe-ringdown effects.185 Variations which incorporate echoes in each segment of the tl

period to suppress artifacts due to relaxation also exist.lgs’lgG

It is, however, possible to obtain a pure-phase, isotropic-anisotropic spectrum

using only 90” pulses. A sequence that does this was also proposed by Gan183 and is

depicted in Figure 5.4. Like the original MAT experiment, the symmetry of 120° rotations

about the magic-angle axis is exploited, but the definition of tl used in this experiment is

somewhat unconventional. By varying both the time at which signal acquisition is begun

and the phase cycling of the receiver, experiments wi~ effectively different signs of tl can

be recorded as described elsewhere. 183 The experiment labeled P+ in Figure 5.4
iCoai,,,{3(tl/2) }

corresponds to a tl -domain signal proportional to e (neglecting relaxation)
iCoa,,O{3(-t,72) }

while the experiment labeled P- corresponds to e . To process the data,

one must first apodize the P+ and P- data sets separately since the echo maxima shift in

opposite directions in increments of half the tl dwell time. Hypercomplex cosine and sine

data sets can be then formed by linear combination of these two data sets, and Fourier.

transformation in both dimensions gives a skewed spectrum. It is tempting to think that

one should shear the spectrum by using Equation (1.141) with f= 1/3 to obtain more easily

interpretable results. However, the rotational echoes present in the t2 dimension of the P+

and P- data sets lead to sidebands in the two-dimensional spectrum, and shearing would

produce anisotropic shapes that are difficult to interpret. 183

The pulse sequence of Figure 5.4 was applied to low albite, but the quality of the

recorded spectrum was poor (data not shown) with dispersive contributions to the

lineshape even in the unsheared spectrum. A possible reason for this is the combination of

a long 29Si T2 relaxation time and weak heteronuclear couplings in low albite. The pulse
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sequences of Figures 5.1, 5.3, and 5.4 were designed under the assumption that the

magnetization which remains in the transverse plane after the first 90” pulse of the z-filter

will completely dephase before the second 90° pulse. 186 While this is a good

13C spins coupled to many protons,approximation for 168it may not be valid for our case

where the heteronuclear couplings are weak and transverse relaxation slow. Although, in

principle, it would be possible to create a longer phase cycle that eliminates the effect of

this residual magnetization, there is a better alternative for samples with long T2 times.

CP

0202 0202 0202
1111 1111 1111
0000 0000 0000
3300 3300 3300
1111 1111 1111
3300 0033 3300
1111 1111 2222
0220 3131 1331
0220 1313 1331

+ +-Nzr-+ I
3

0202
1111
0000
3300
1111
0033
2222
0202
2020

0202 0202
1111 1111
0000 0000
3300 3300
1111 1111
3300 0033
3333 3333
2002 1313
2002 3131

!
v

0202 0202
1111 1111
0000 0000
3300 3300
1111 1111
3300 0033
0000 0000
3113 2020
3113 0202

Figure 5.4- Pure-phase pulse sequence for isotropic-anisotropic correlation spectroscopy
*83 Spin-temperature altemation47using only 90° pulses. and CYCLOPS46 have been

added to the originally published phase cycle. When applied to organic samples,
heteronuclear decoupling must be used during the evolution and detection periods.
Details are described in the text.
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By using 180° pulses, it is possible to avoid the z-filters (and the loss of magnetization that

goes along with them) “md keep all of the magnetization in the transverse plane. Methods

for doing this will be described in the following section.

5.3.3 MAT with 180° Pulses

Variations of the MAT experiment which use 180° pulses rather than 90” pulses

provide a convenient alternative for samples with sufficiently long T2 times.185 As shown

in Section 5.3.1, such experiments take advantage of the same symmetry properties of

second-rank tensors that the MAH experiment exploits. By keeping the magnetization in

the xy-plane, the loss of magnetization that comes from using a z-filter is avoided.

Figure 5.5 shows one such pulse sequence developed by Gann (not to be confused

with Gan) et al,. 179and Figure 5.6 shows a spectrum of low albite acquired with this

sequence. While the sensitivity of the spectrum is quite good, the resolution is rather poor.

This is due to the fact that the experiment is a constant-time experiment, which limits the

maximum value of tl, leading to truncation artifacts. From the pulse spacing in Figure

5.5, it is easy to see that tl must be less than 2N7= Increasing the value of N leads to

improved resolution for a given dwell time, and the value of N also must be large enough

that the entire echo can be acquired if one wishes to avoid phase distortions. However,

due to T2 relaxation, there is a practical limit on the total number of rotor cycles which can

be used before the sensitivity becomes prohibitively low.

I
90”

CP

s t-d +
CP

4-X+ n z~
3 3 3

Figure 5.5- Pulse sequence of Gann et al.179for performing an MAT experiment with 18W
pulses. The 18(Ypulses are phase cycled in steps of 18Wto retain the AI coherence at all
times. Spin-temperature altemation47 and CYCLOPS46 are also used. An echo is formed
for n=N as described in Section 5.3.1. Because the whole echo is acquired for all tl points,
only a single data set needs to be collected.
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The spectrum shown in Figure 5.6 was acquired with N= 1. Interestingly, the most

intense peak in the t2 dimension occurred at two rotor periods after the last 180° pulse

rather than one. The reason for this artifact is not yet understood, though it may be related

to the fact that the number of rotor cycles over which the experiment was performed was

quite small, causing one of the rotational echoes to be coincident with the last 180° pulse.

Pulse-length or timing imperfections and other sources of experimental error also cannot

be ruled out. The data was processed using whole-echo acquisition (see Section 1.5.2)

with the most intense peak used as the center of the echo. Surprisingly, using the “wrong”

echo gave results which were in good agreement with those obtained from other pulse

sequences. This was most likely due to the fact that the anodization applied to the t2

dimension suppressed much of the signal from the other rotational echoes, so the majority

of the signal was determined by one rotary echo. Since all of the rotary echoes have the

same shape (differing from each other only by a phase shift),39 similar isotropic-

anisotropic correlation spectra can, in principle, be obtained from any one of them. 18S

Still, the results obtained from this method should be viewed as suspect until the nature of

the artifact is fully understood.

r.....................‘\
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-50 -75 -100-125-150

Figure 5.6- Isotropiclanisotropic correlation spectrum of low albite acquired using the
pulse sequence of Figure 5.5. The dwell time in the tl dimension was 300 ~s while that in
the t2 dimension was 100 ps. Fifteen t1points (with 1024 scans in each) and 512 tz points
were acquired, but the data was zero filled to form a 128 x 512 data set. The total
experimental time was 21.5 hours. The spinning speed was 470 Hz and 29Si 180” pulse
length was 28 p.s. The experiment was performed with N= 1.
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Figure5.7- Pulse sequenceof Hu et aL180for performing the MAT experiment with 180”
pulses. Two data sets are collected corresponding to positive and negative increments of
E,and the data are processed as described in the text. Phases are cycled as described in the
caption of Figure 5.5.

Another method for performing the MAT experiment with 180° pulses was

developed by Hu et al. and is shown in Figure 5.7.180 As in Gann’s experiment, a series of

180° pulses is used to keep the magnetization in the xy-plane at all times. To obtain pure-

phase spectra with this sequence, two data sets must be recorded. These data sets are

acquired with the same phase cycle and differ only in the spacing between pulses. In one

data set, the time between the cross polarization pulse and the first 180” pulse is given by

(Nzr/6 + S) while in the other data set it is given by (N7r/6 -s) . In both cases, the

value of E is incremented from slice to slice by one-sixth of the tl-dimension dwell time.

A linear combination of the data sets gives the amplitude-modulated sine and cosine data

sets, which can then be processed in the usual way.

An experiment that uses hypercomplex data acquisition will be less sensitive (by a

factor of ~2 ) than one that uses whole-echo acquisition since twice as many data points

must be acquired to obtain pure-phase spectra. However, it is not necessary to wait

several rotor periods for the formation of an echo. The experiment of Hu et al. is also a

constant time experiment180 and is subject to a more stringent condition (tl z N~r) than that

of Gann et al. 179Figure 5.8 shows a spectrum acquired with N=4.

150



q~ (

-65 -90 -115 -140
-50 -75 -100-125-150

[PPml
Figure 5.8- Isotropic/anisotropic correlation spectrum of low albite acquired using the
pulse sequence of Figure 5.7. The dwell time in the tl dimension was 300 ps while that in
the t2 dimension was 100 ~. Fifty-seven hypercomplex tl points (with512 scans in each)
and 512 t2 points were acquired, but the data was zero filled to form a 128 x 512 data set.
The total experimental time was 82 hours. The spinning speed was 470 Hz and 29Si 180”
pulse length was 28 ps. The experiment was performed with N=4.

5.3.4 TOSS-reTOSS

MAT is not the only way to obtain isotropic-anisotropic correlation spectra of

spinning samples. Another method]74 makes use of a technique known as TOtal

Suppression of Sidebands (TOSS). ‘82)]87Like the versions of MAT which use 180° pulses,

TOSS exploits the fact that 180° pulses can generate echoes of spin components while

sample spinning generates rotational echoes.

By cleverly positioning the 180° pulses, one can allow

corresponding rotational echo manifolds to interfere in such a

the spin echoes and their

way that the anisotropic

contributions to the FID cancel out, and the isotropic contributions (the centerbands of the

frequency spectrum) add constructively over the powder.lgz Unlike in the case of MAT,

this constructive interference is not a true echo, and the magnetization vectors themselves

are not aligned at that point. Consequently, rotational echoes will not be formed. 169’18S

The conditions for sideband suppression can be determined by looking at the total phase

evolution23 as was done in the MAT case
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a a+b a+b+c

cD(T’) = ~Q(t)dt - ~ S2(t)dt + j’ f2(t)dt

o a a+b
a+b+cid a+b+c+d+e

- J f2(t)dt+ ~ 12(t)dt

a+b+c a~bw~cl

(5.14)

where the 180° pulses change the sign of the phase. The goal is to find a set of pulse

spacings {a, b, c, d, e} that causes the anisotropies to cancel out for all crystallite. In

addition, the spacings are chosen so that at the end of the fifth interval, the isotropic echo

is also refocused. Beginning acquisition at that point permits an FID that corresponds to a

sideband-free spectrum to be recorded. Many possible sets of pulse spacings have been

given in the literature; 182’i89one set of values is listed in the caption of Figure 5.9.

The trajectories of the crystallite can be refocused by applying the TOSS

sequence in reverse. Kolbert et al.lc9 showed that by inserting an tl evolution period

between a TOSS sequence and a reversed TOSS sequence, an isotropic-anisotropic

correlation spectrum can be recorded. This sequence is known as TOSS-reversedTOSS

(TOSS-reTOSS or TOSS-’’deTOSS”) and is shown in Figure 5.9a.

Like the versions of MAT that use 180° pulses, the TOSS-reTOSS experiment can

only be used on samples with T2’s that are longer than several rotor periods, and all three

experiments are susceptible to artifacts from imperfect 180” pulses. The TOSS-reTOSS is

not a constant time experiment which means there is no restriction on tl. This’ does not

prove to be much of an advantage compared to the pulse sequence of Figure 5.7 since the

TOSS and reTOSS steps themselves have a combined duration of 4.57r before the first t ~

point is even taken. A disadvantage of the TOSS-reTOSS experiment is the fact that it

produces phase-twist lineshapes191 (see Figure 5. 10). This can be remedied by performing

an experiment with whole-echo acquisition as shown in Figure 5.11. Another potential

problem with TOSS-reTOSS is the question of the centerband intensity which is distorted

in the TOSS experiment. 169The reverse TOSS part of the sequence is predicted to undo

this distortion, however.191 In fitting the TOSS-reTOSS experiments performed with a
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Figure 5.9- (a) Original TOSS-reTOSS sequence 169for isotropic-anisotropic correlation
spectroscopy. No phase cycling was applied to the 180° pulses since phase-cycling does
not affect the efficiency of TOSS.lW (b) TOSS-reTOSS combined with whole-echo
acquisition for obtaining pure-phase spectra. The 180”pulses are cycled in steps of four to
retain only the p=- 1 coherence.The timings in both sequences are given by: a=O.12267P
b=0.07731P c=0.2236rP d=] .04337P and e=0.7744~r The echo delay must satisfy the
condition A=a+nq where n is an integer.
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Figure 5.10- Isotropic/anisotropic correlation spectrum of low albite acquired using the
pulse sequence of Figure 5.9a. The dwell time in the tl dimension was 300 p.s while that
in the t2 dimension was 100 p.s. Sixty-one hypercomplex t1 points (with 512 scans in
each) and 512 t2 points were acquired, but the data was zero filled to form a 128 x 512 data
set. The total experimental time was 88 hours. The spinning speed was 470 Hz and 29Si
180”pulse length was 34 j.t.s.
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spinning speed of 680 Hz (see Tables 5.1, 5.2, and 5.3), the centerband intensity was

excluded from the fits. It was included in the fits of the data acquired with a spinning

speed of 470 Hz. No systematic effect was observed.
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Figure 5.11- Isotropic/anisotropic correlation spectrum of low albite acquired using the
pulse sequence of Figure 5.9b. The dwell time in the tl dimension was 300 I.Mwhile that
in the t2 dimension was 100 P.S. Sixty-four t1points (with 512 scans) and 1024 t2 points
were acquired, but the data was zero filled to form a 128 x 512 data set. l%e total
experimental time was 46 hours. The spinning speed was 470 Hz and 29Si 180” pulse
length was 34 ps. The time allowed for echo formation was 5~~10.6 ms.

5.4 Application of Isotropic-Anisotropic Correlation Methods to Low

Albite

The isotropic-anisotropic correlation spectra presented in Figures 5.6, 5.8, 5.10,

and 5.11 were recorded under similar experimental conditions. All used a spinning speed

of 470 Hz (controlled with a home-built spinning speed controller), a dwell time in the tl

dimension of 300 ps, 27A] excitation field strengths of 4.5-6 kHz, 29Si 180° pulse field

strengths of 2.4-2.8 kHz, and a recycle delay of 5 s between scans. Other parameters are

listed in the figure captions. The signal-to-noise was calibrated by recording one-

dimensional spectra before and after each two-dimensional experiment; to within

experimental error, the intrinsic signal-to-noise ratio was constant in all experiments.

Variations in the quality of the two-dimensional spectra are due to different methods of

data acquisition, different numbers of tl points recorded, and pulse-sequence-dependent

artifacts as discussed in Section 5.3. All data were apodized with exponential line

broadening of 100 Hz in the anisotropic dimension and 50 Hz in the isotropic dimension.
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The t* dimension was zero-filled to 128 points in all cases. The number of t2 points was

512 for all experiments except the TOSS-reTOSS experiment with whole echo acquisition

where 1024 points were used. The contours levels in all four figures range from 10 to

100% in steps of 10%. The spectra were referenced to an external standard of TMS.

The cross-polarization conditions were optimized experimentally. At

cor/ (2Z) = 470 Hz, the best 27A1 spin lock (in the sudden regime) occurred at a field

strength of 1070 Hz. The 29Si spin lock field strength was matched to it empirically, and

optimum contact times were found to be 8 ms.

The principal values of the CSA were extracted by performing Herzfeld-Bergef1°

fits. Spectra acquired with a spinning speed of 680 Hz (data not shown) were fit using the

program Speedyfit99 provided by Dr. H. J. M. de Groot. The program used Herzfeld-

Berger lookup tables to simulate spinning sideband manifolds and can fit spectra with

overlapping sites provided they have eight or fewer sidebands. Figure 5.12 shows an

d

J_Jl

LExperimental

L-Simulated

Difference

I I I 1 i I 1 1 I I 1

-60 -80 -100 -120 -140

Figure 5.12- Typical results of the Speedyfit99program for determining principal values
of the CSA tensor from MAS spectra. The experimental spectrum corresponds to the -
91.8 ppm site as recorded using the pulse sequence of Figure 5.7 with a spinning speed of
680 Hz. The results are listed in the fourth row of Table 5.1.
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example of a typicaI fit from this program. Spectra acquired with a spinning speed of 470

Hz had more sidebands and were fit using a program that utilized Floquet theory and was

written with GAMMA130 by Dr. Matthias Ernst.

pulse
sequence

t--

Figure 5.5

Figure 5.5

I Figure 5.7

t-

Figure 5.7

Figure 5.9a

k
Figure 5.9a

Figure 5.9b

average

1 I i I I

@(27t)
all 022 633 Cs 5CS

[ppd [ppd [ppd q [ppd1 1 1 , ,
470 Hz I .61 +-3 43g * 3 -126*3 ().8 ~ 0.1 I -35 * 4

680 Hz -60 ~ 7 -88 ~ 6 -127*8 0.8 ~ 0.3 -36 ~ 8

470 Hz -62 & 2 -89 ~ 1 -125 * 3 0.8 * 0.1 -33 * 3

680 Hz -64 &4 -90 * 3 -122*4 ().9 * ().2 .30 * 5

470 Hz -54 * 7 439~ 3 -132*9 “ 0.9 * 0.3 -40 * 9

680 Hz -60 ~ 4 -88 * 3 -127*4 o-g ~ o.2 -35 * 4

470 Hz -62 & 1 -86 ~ 6 -127k7 ().7 * 0.2 -35 * 7

N/A -60 ~ 3 438 * 1 -127*3 0.8 ~ 0.1 -35 * 3

Table 5.1 - Principal values of the 29Si T2m site (-91.8 ppm) in low albite as determined by various
isotropic-anisotropic correlation techniques using 27A1-to-29SiCP. The error bars represent the accuracy of
the fit and not the inherent accuracy of the pulse sequence. The unweighed average and standard deviation
of all experiments is given in the Iast row.

pulse all(i)#(2@
022 ~33 Cs 8CS

sequence [pprnl [ppml [mm] n [ppdI I I I I I
Figure 5.5 470 Hz -77 * 3 -94 * 3 -118*3 ().8 ~ ().2 -22 * 4

t-

Figure 5.5

Figure 5.7

680 Hz I -73 * 7 I -93 * 5 I -123A7 I 0.7 * 0.3 I -27 ~ 7

470 Hz I -76 ~ 2 I -95 ~ 1 I -118*2 I 0.9 * 0.2 I -21-t-3

Figure 5.7 680 Hz -74 * 2 -93 * 1 -121 *2 0.8 ~ ().1 -25 * 2

Figure 5.9a 470 Hz -75 * 3 -94 & 3 -119*3 0.9 * ().2 -23 * 4

Figure 5.9a 680 Hz -72 *4 -93 * 3 -123*4 ().8 ~ 0.2 -27 ~ 4

Figure 5.9b 470 Hz -76 * 1 -94 * 1 -118~1 ().8~0.l -22 * I

average NIA -75 * 2 -94 * 1 -120*2 0.8 * 0.1 -22 * 2

Table 5.2- Principal values of the 29Si T20 site (-96.1 pm) in low albite as determined by various
isotropic-anisotropic correlation techniques using f27A1-to-2Si CP. The unweighed average and standard
deviation of all experiments is given in the last row
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pulse all 022 033
(DJ(27t) Cs

~cs

sequence [ppd [ppd [ppd ‘1 [ppd

Figure 5.5 470 Hz -85 ~ 3 -loot3 -127*3 ().6 ~ ().2 .23 ~ 4

Figure 5.5 680 Hz -80 ~ 5 -98 ~ 5 -134*6 ().6 ~ ().3 -30 ~ 6

Figure 5.7 470 Hz -85 ~ 2 -1OO* 1 -127*2 ().7 * ().1 -23 i 3

Figure 5.7 680 Hz -82 ~ 2 -99 * 2 -131 *2 ().6 ~ ().1 -27 f 2

Figure 5.9a 470 Hz -83 * 3 -101*3 -128t4 ().8 ~ ().2 -24 f 5

Figure 5.9a 680 Hz -81 -F3 -99 * 3 -133*3 ().6 ~ 0.2 -29 f 3

Figure 5.9b 470 Hz -83 k 1 -loot 1 -128* I 0.7 * ().1 -24 + 1

average N/A -83 ~ 2 -1OO* 1 -130*3 “ 0.7 i ().1 -26 f 3

Table 5.3- Principal values of the 29Si T1m site (-103.9 ppm) in low albite as determined by various
isotropic-anisotropic correlation techniques using 27A1-to-29SiCP. The unweighed average and standard
deviation of all experiments is given in the last row.

The results of fits from all four experiments are listed in Tables 5.1, 5.2, and 5.3.

Summations over several ml slices were used to produce anisotropic spectra for fitting

except in the case of the poorly phased TOSS-reTOSS spectra where only one slice was

used. To within experimental error, all four pulse sequences give similar results for low

albite. The error bars reflect the quality of the fits and not the intrinsic accuracy of the

experiment. Due to the small number of experiments performed and the absence of an

29Si CSA parameters in low albite,independent and accurate way to directly measure the

no general conclusions about the reliability of the pulse sequences could be drawn.

Correlations between anisotropic chemical-shift parameters and number of

bridging oxygens have been reported for Qn(OAl) sites,1921193but the influence of 27A] on

the 29Si anisotropy parameters is not currently understood. To date, few such compounds

have been measured, and ab initio calculations on silicates are in their infancy.194 Cross

29Si may enable CSA parameters to be determinedpolarization from quadrupolar nuclei to

for a variety of silicates, providing a database for empirical correlations.

. ,..,..,. ~,.,;...... . --- r.-.
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5.5 Experiments on Low Microcline

Principal values of the chemical-shielding anisotropy have also been determined

for the mineral low microcline (ISAlSi308) by performing isotropic-anisotropic

correlation experiments which utilized 27A1-to-29Si cross polarization. Low microcline

has the same framework structure as low albite (see Figure 3.1) and analogous peak

assignments.l 17 Cross-polarization experimental parameters (e.g. - optimum power levels

and contact times) for the isotropic-anisotropic correlation experiments were similar to

those of low albite (see Section 5.4), and as in the case of albite, the cross-polarized signal

for the Q4(2AI) site (at -94.0 ppm) was consistently less intense than that of one of the

Q4(1A1) sites (at -99.5 ppm) for a range of spinning speeds. (The other Q4(1AI) site could

not be used for comparison since the peak contained contributions from albite present in

the sample.)
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Anisotropic Dimension [ppm fromTMS]
Figure 5.13- Isotropic and anisotropic spectra of 29Si in low microcline recorded using

27AI-to-29Si cross polarization. The spinningthe pulse sequence of Figure 5.9b with
29Si 180” pulse length was 58 ps. Sixty-three tl slices werespeed was 500 Hz, and the

recorded with 512 scans in each and a recycle delay of 5s. The delay for formation of the
echo was five rotor periods.
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Figure 5.13 shows the isotropic projection and several anisotropic slices from a

TOSS-reTOSS experiment (whole-echo version) performed on low microcline. Due to

the domains of low albite nearly always found in natural samples of low microcline,195 the

isotropic 29Si spectrum has many closely spaced peaks. The principal values of the

chemical-shielding tensors could not have been determined from a one-dimensional MAS

experiment. However, they are easily determined from the two-dimensional spectrum and

are summarized in Table 5.4.

Isotropic
Shift coJ(2@

all 622

[ppd [ppd [pprnl

-94.0

-94.0

-96.4

-96.4

-99.5

-99.5

500 Hz -77 *3a -94* la

680 Hz -73 *9a -92* lIa

500 Hz I -79 ~ 6 I -96 ~ 5

680 Hz I -75 ~ 6 I -92 i 8

033 [ppm] ~cs

==I==
1

-127*9 I ().9 * ().7

-118 *2a ().8~().la

+

-125 t 10a 0.7 i0.7a

-123*6 ().7 * 0.4

-132*6 0.5 ~ 0.4

/jcs

[pprnl

-34 ~ 6

-34 * 9

-22 * za

-28 t 10’

-24 f 7

-32 t 7

Table 5.4- Principle values of 29Sichemical-shielding tensors in low microcline as determined from fits of
anisotropic slices recorded with the pulse sequence of Figure 5.9b. The corresponding experimental data are
presented in Figure 5.13.

a.

b.

Since our sample of low microcline, like almost all samples found in nature, 195contains
domains of nearly pure albite, the peak at -96.4 ppm is actually due to an overlap of albite snd
microcline resonances.

These values differ from those published by De Paul et al. 196due to an error in the original cal-
culation.

5.6 Validity of Using Cross Polarization from Quadrupolar Nuclei

One potential concern when using cross polarization from quadrupolar nuclei to

determine chemical-shielding anisotropy powder patterns is whether the cross-

polarization process significantly distorts such patterns. For spin- 1 nuclei such as 14N, the

cross-polarization match condition has been shown to be highly dependent on the

orientation of the quadrupolar nucleus. 197 While similar studies have not been performed

for cross polarization from odd-half-integer quadrupolar

central transition powder pattern after a spin lock12b has
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some cases due to different effective adiabaticity parameters for individual crystallite.

The general trend for cxd is that the low-frequency side of the powder pattern loses

intensity. Even when only spin-1/2 nuclei are involved in cross polarization, distorted

powder patterns have been observed and attributed to Hartmann-Hahn

anisotropic cross-polarization and relaxation rates.1c3

Although we have optimized the spin-lock efficiency so that as

mismatch and to

many crystallite

as possible are available for cross polarization and performed the experiments at the

Hartmann-Hahn match, distortions could still have conceivably occurred. To test this,

we have recorded slow-spinning, 29Si direct-excitation spectra of low albite at several

different spinning speeds. Figure 5.14 shows one such spectrum along with a simulation

based on the parameters from the fourth row of Tables 5.1, 5.2, and 5.3. A Herzfeld-

Berger spinning sideband analysis was performed on a different spectrum (not shown)

recorded at a spinning speed of 1065 Hz. Due to baseline distortions, the quality of this

a)

I I I I 1 I I I I (
-15 -35 -55 -75 -95 -115 -135 -155 -175 -195

[ppmfrom TMS]

Figure 5.14- (a) 29Si NMR spectrum of low albite recorded at 11.7 T with a spinning
speed of 575 Hz. Twenty-four scans were acquired with a recycle delay of 2000 s. (b)
Simulated 29Si spectrum based on the parameters of the fourth row in Tables 5.1,5.2, and
5.3. Gaussian lines with widths of 135 Hz were used to simulate the sidebands.
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spectrum was not high, but the three sites could be partially resolved in several of the

sidebands. The results of the analysis are summarized in Table 5.5. At first glance, the

Isotropic
Shift [ppm]

011 [ppm] CZZ[ppm] a33 [ppm] qcs 5CS [ppm]

-91.9* 0.1 -61 & 7 -84 ~ 7 -130t 8 ().6 ~ ().3 -39 ~ 8

-96.1 i 0.1 -75 * 4 -93 * 5 -120t 4 ().8 ~ ().4 -24 t 4

-103.8+ 0.1 -89 ~ 5 -92* 10 -131 * 6 0.1 * 0.5 -27 ~ 6

Table 5.5 - Chemical shielding parameters derived from a Herzfeld-Berger analysis of a 29Si direct-
excitation MAS spectrum of low albite (spinning speed= 1065 Hz).

agreement between these parameters and the previous] y measured ones (see Tables 5.1,

5.2, and 5.3) does not look very good. However, the error bars for the direct-excitation

spectrum are quite substantial due to the severe peak overlap, and except for the value of

qcs for the T 1m site, the results from the cross-polarization experiments all fall within the

error bars of the values listed in Table 5.5. While this does not rule out the possibility of

distortions, it is encouraging that the two data sets are not inconsistent.

5.7 REDOR Experiments

Another example of a potential application of cross polarization from quadrupolar

nuclei is in heteronuclear experiments between spin-1/2 and quadrupolar nuclei. As

mentioned in Section 1.2.4, the strength of the dipolar coupling between two spins is

inversely proportional to the cube of the distance between them. Thus, in systems which

effectively contain isolated spin pairs, a measurement of the dipolar-coupling constant

translates into a direct determination of the internuclear distance. The Spin-Echo DOuble

Resonance (SEDOR)5 technique is the simplest method for measuring internuclear

distances

generates

pulse at a

between a pair of unlike nuclei. In the SEDOR experiment, a 90” pulse

transverse magnetization on the I spins in a static sample. Application of a 180°

time z later, will reverse the effects of the heteronuclear dipolar couplings, field

inhomogeneities, and the chemical-shift interactions so that they rephase, leading to the

formation of an echo at the time 2z. However, if 180” pulses are applied to the I and S

spins simultaneously, the heteronuclear dipolar coupling continues to dephase during the
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second half of the experiment. Taking the difference between the spectra with and without

the 180° pulse on the S spins gives a residual signal that is due to the heteronuclear dipolar

interaction.

In many cases, the high resolution associated with magic-angle spinning is

desirable, thus a technique has been developed by Gullion et al.1981]99to measuring

heteronuclear distances in rotating samples. This technique is known as Rotational-Echo

DOuble Resonance (REDOR). Conceptually, it is similar to SEDOR, but since sample

spinning itself averages out the weak heteronuclear interactions, a series of rotor-

synchronized 180” pulses is required to produce the appropriate dephasing and rephasing

behavior.

In the most common version of REDOR, ’00two experiments are performed. In

one, a rotor-synchronized Hahn-echo is applied to the spin species which will be detected,

and series of 180° pulses is applied to the other channel every half a rotor period except

when the 180” pulse is applied in the first channel. This sequence vill refocus all

interactions except for the heteronuclear dipolar interaction. The phase accumulation for a

given crystallite can be calculated (in an analogous manner to that of Section 5.3.1 with

the relevant interaction now being the heteronuclear dipolar interaction), and from this,

the FID of a powder sample can be determined.200 In the other experiment, the 180° pulse

on the detected channel is left out, and both dipolar and CSA interactions will be

refocused. Taking the difference between the two FIDs and normalizing gives a measure

of the heteronuclear dipolar coupling, which can be expressed in an analytical form using

Bessel functions20)

00
AS— = 1- [Jo(findz,)] 2+2 ~ ~
so

[Jk(findq)l 2 (5.15)
k=116k –1

where d is the dipolar coupling constant and n is the total number of rotor periods over

which the experiment is performed.

Figure 5.15 shows a variation of the REDOR experiment suitable for use with

27A1-to-29Si CP. The train of 180° pulses was applied to the detected spins based an

experiment which was designed to minimize resonance offsets.202 Although offset effects
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were not a major concern in our case, this approach meant that only one 180° pulse needed

to be applied in the 27A] channel. This differs from other sequences which used REDOR

to measure distances between quadrupolar and spin-1/2 nuclei.1~

An important aspect of the pulse sequence of Figure 5.15 is the fact that the 29Si

27A1 This does more than justmagnetization is generated by cross polarization from .

enhance the sensitivity of the 29Si signal. If a 90” pulse were directly applied to the 29Si

instead, the REDOR curve would have to be modified to account for that fact that some

29Si nuclei would be dipolar-coupled to 27AI nuclei that were not in central-transition

27AI would only influence those that were in thestates. A selective 180° pulse on the

central transition, leading to a decreased maximum of the AS/S. curve.2w By using cross

0202
1111
2020
0000
3322
0000
1111
0000
1111
0231

0202
1111
2020
0000
1100
0000
1111
0000
1111
2013

Figure 5.15 - A version of the REDOR experiment which can be used with cross
polarization from quadrupolar nuclei. The bracketed parts of the sequence can be
repeated, allowing the experiment to be performed over n=6+4N cycles where N=O,1,2,

zoz The 27AI spins areetc. XY-4 or XY-8 phase cycling is used for the bracketed pulses.
used as a magnetization source, and a flipback pulse203restores their magnetization to
along the z-axis. Two data sets are recorded: one with and one without the 180° pulse on
the aluminum.
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27A1 do not change), onepolarization in the sudden regime (where the eigenstates of the

pre-selects only those 29Si sites which are coupled to central-transition 27A] states. The

REDOR experiment can then be treated, to a good approximation, as one between two

spin- 1/2 nuclei.

Note that the recently developed Rotational-Echo Adiabatic-Passage DOuble

Resonance (REAPDOR)205$2~ experiment takes the opposite approach and attempts to

observe the dipolar dephasing from all of the quadrupolar states. This is accomplished by

using the interplay between an applied rf field and sample spinning in the adiabatic regime

(see Section 3.2). In place of the 180” pulse on the quadrupolar channel in a REDOR

experiment, REAPDOR uses intense rf irradiation to alter the quantum states of the

quadrupolar nuclei, preventing dipolar refocusing by the pulses on the spin-1/2 channel.

A predicted difference signal with two adjustable parameters (the dipolar-coupling

constant and the fraction of spins which undergo the adiabatic passage) can then be

calculated and compared with experiments.

AS
so

1

0.8 -
x
x x

0.6 -

0.4 -

0.2 -

0
0 5 10 15 20 25 30

rotor cycles

Figure 5.16 - 27A~29Si REDOR of the T20 site in low albite. The x’s represent
experimental data points (from two sets of experiments) acquired using the pulse sequence
of Figure 5.15, with a spinning speed of 2.2 kHz, a 27A1180”pulse length of 33 p.s, and a
29Si 180” pulse length of 52 p.s. Due to T2 relaxation, the experiment could not be
performed over more than 30 rotor cycles. The solid curve represents a simulation of the
REDOR signal obtained using Equation (5.15) (truncated at k=lO) with d=210 Hz.
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Figure 5.16 shows the results of REDOR applied to the T20 site in low albite

29Si site should see only oneusing 27A1-to-29Si CP. To a good approximation, this

aluminum (with a coupling constant of 210 Hz). Although the first experimental data

point falls along the predicted curve, subsequent points due not. However, the theory of

REDOR was developed assuming that the 180° pulses were ideal (i.e. - of negligible

length). Each 180° pulse in our experiment was 11% of the length of the rotor cycle; this

was the minimum pulse length achievable with a 100 W amplifier on our large coil probe.

Ignoring the effects of dipolar coupling during the pulse is probably not valid in this case,

and either the theory or experiment should be adjusted accordingly.

Other researchers have also used REDOR with quadrupolar nuclei. In many cases,

the results were not quantitative, but this is to be expected because the approximation of

isolated spin pairs was not valid. 1271134,143,203.207In cases where there were effectively

isolated spin pairs, 2W*208reasonable values for the dipolar-coupling constants were

extracted (though no independent X-ray confirmation was possible), but only points at the

beginning of the REDOR curve (before AS/S. reached a value of 0.5) were examined.

. .....,, -/ -,-.,,,. -
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Chapter 6: High-Resolution Heteronuclear Correlation

between Quadrupolar and Spin-1/2 Nuclei

using Multiple-Quantum Magic-Angle

Spinning

In Chapters 3 and 4, the issues involved in cross polarization from quadrupolar

nuclei were discussed, and in Chapter 5 several applications were demonstrated. In all of

those applications, however, the quadrupolar nucleus was not directly observed. In this

chapter, recent advances in the high-resolution spectroscopy of quadrupolar nuclei will be

reviewed. Then a new technique that combines cross polarization from quadrupolar

nuclei with the Multiple-Quantum Magic-Angle Spinning technique will be introduced.

This new technique is capable of producing high-resolution heteronuclear correlation

spectra in which one of the dimensions is from a half-integer quadrupolar nucleus.

6.1 Methods for Obtaining High-Resolution Spectra of Quadrupolar

Nuclei

Although magic-angle spinning leads to high-resolution spectra for spin-1/2

nuclei, it fails to fully remove the second-order quadrupolar anisotropy. Consequently,

MAS spectra of half-integer quadrupolar nuclei generally contain broad asymmetric peaks

(see Section 1.4). The shapes of such peaks contain structural information (via the q and

CqCCparameters), but when multiple sites are present in a sample, the resolution is

frequently poor. Fortunately, several techniques have been developed to produce high-

resolution spectra of quadrupolar nuclei.

In Section 1.2.5 it was shown that the (+m - -m) transitions of a quadrupolar

nucleus are unaffected to first order by the quadrupolar Hamiltonian. When second-order

perturbation theory is applied, the frequencies of these transitions are affected in an

orientation-dependent manner. For a sample spun at an angle (3with respect to the static

field, the (+m ++ -m) transition frequency of an individual crystallite is given by (see

Equation (1. 114))
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~(2Q)
C:cc A C (S m) + A2(ctQ,flQ)C2(S,m)p2 ( cose)+ms -m =y{~o, (6.1)

L
+ A4(cxQ,flQ)C4(S,m)pd ( cos6) }

in the fast-spinning limit where ctQ and ~Q are the Euler angles that define the orientation

of the crystallite with respect to the axis of rotation; P2 and P4 are Legendre polynomials;

S is the spin-quantum number of the quadrupolar nucleus; and the {Cn(S,m) } are scaling

coefficients that depend on which (+m - -m) coherence is excited. To obtain narrow

resonances from quadrupolar nuclei in powder samples, the second and third terms on the

right-hand side of Equation (6.1) must be made to vanish for all values of cxQand ~Q. This

can be accomplished either by manipulation of the physical space (using sample

reorientation) or by manipulation of the spin space (using rf pulses).

6.1.1 DOuble Rotation (DOR)

The technique of DOuble Rotation (DOR) eliminates the second-order

quadrupolar anisotropy of the central transition by spinning the sample about two axes

simultaneously. One axis is at an angle of 54.74° (the magic angle) with respect to the B.

field, and the second axis is at 30.56° with respect to the magic-angle axis. Figure 6.1

shows a schematic of the rotor orientations in a DOR probe. Technical details of the probe

design and other experimental considerations can be found in the Ph.D. thesis of K. T.

Mueller10 while theoretical aspects are discussed in the thesis of B. Sun.2W

BO o
L 1

We 01=54.740

E12=30.56”

Figure 6.1- Schematic of DOuble Rotation (DOR). An external rotor rotates at the magic
angle while an internal rotor simultaneously spins at an angle of 30.56° relative to the
external rotor.

.. . -;, ~ - ,, .,...,-,, 77 ,., l,.,.,.
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To understand how DOR works, it is necessiuy to extend Equation (6. 1) to the case

of simultaneous rotation about two axes. This can be done by using an additional Wigner

rotation matrix in a generalization of Equation (1.108)

Substituting Equation (6.2) into Equations (1. 100) and (1. 113) gives for m=l/2 and rapid

spinningl”

.

~ (2Q) = C;..
— {AO co(s,~) + A2(~Q,PQ)C2(S,~) P2(c0s91)P2(c0s92)+;+.12 ‘L

+ A@Q,~Q)C4(S,~)P4(COS 9 ~)p~(cos 92)

(6.3)

}.

As in the single-axis case, the derivation is lengthy and is described elsewhere. 10’209

However, the functional form of Equation (6.3) is quite similar to the single-axis case; the

only difference is that the terms Pl(cos 9) are replaced by products Pl(cos 9 ~)Pl(cos 6Z).

The same substitution will also be made for Legendre polynomials appearing in other

frequency expressions (e.g. - the chemical-shielding and dipolar anisotropies).

It is now clear how to eliminate the quadrupolar anisotropy by DOR. All that must

be done is to choose 91 and 92 such that one angle is a zero of the second-order Legendre

polynomial (the magic angle) and the other is a zero of the fourth-order Legendre

polynomial (either 30.56” or 70.12”). Then all the anisotropic terms will disappear

simultaneously. For technical reasons (such as filling factor and sensitivity) the

combination of angles shown in Figure 6.1 is most suitable for DOR experiments.2]0

In addition to eliminating the second-order quadrupolar broadening, DOR can, in

principle, also average out the dipolar couplings and the chemical-shielding anisotropy

since one of the rotors is spun at the magic angle. In practice, however, averaging of any

of these anisotropies by DOR is incomplete since the outer rotor can only be spun at slow

speeds (about 1 kHz). Thus, DOR spectra typically show a multitude of sidebands,211
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which can make it difficult to identify the isotropic peaks from examination of a single

spectrum. A comparison of DOR spectra recorded at different speeds, however, permits

one to distinguish isotropic peaks from sidebands since the isotropic peaks will not shift

their positions as a function of spinning speed.

Since DOR at least partially averages out dipolar couplings, it works well for

highly abundant quadrupolar nuclei. It also works well for samples with short TI times (in

contrast to DAS) because the averaging process is continuous. That same continuity is

also a disadvantage, however, because it essentially limits DOR to being a one-

dimensional technique. Methods which average out the quadrupolar interaction

sequentially are inherently more versatile since they permit a two-dimensional correlation

of the completely averaged (isotropic) quadrupolar spectrum with an incompletely

averaged (anisotropic) quadrupolar spectrum. Two such methods will be discussed below.

6.1.2 Dynamic-Angle Spinning (DAS)

Dynamic-Angle Spinning (DAS) also involves spatial manipulation of the sample

to eliminate the quadrupolar anisotropy of the central transition. A schematic of a basic

DAS experiment is shown in Figure 6.2. Many variants of this sequence exist and are

discussed extensively elsewhere.]l In this section, we will not be concerned with the

modes of data acquisition but will just illustrate the principle behind the experiment.

Some of these data-acquisition issues are relevant for MQMAS, however, and will be

discussed in Section 6.1.3.

In the DAS experiment, the sample is spun about an axis oriented at 0* degrees

with respect to the static field and magnetization evolves for a time t ~/ ( k + 1) . A 90”

pulse stores one component of the evolving magnetization along the z-axis while the axis

of sample rotation is quickly reoriented to the angle 02. Another 90° pulse returns the

magnetization to the transverse plane, and the magnetization now evolves at the second

angle for a time kt ~/ (k + 1) . The angles of the two axes and the amount of time spent at

each angle are chosen such that the anisotropic quadrupolar evolution of the central

transition at the first angle is cancelled out by the evolution at the second angle, leading to

the formation of an isotropic echo. Mathematically, these can be derived as follows. The

signal at the time tl can be calculated from Equation (6.1)

,, .,. ... .... .,-, .O .,
,. -,:.,
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4..; ..,,
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+ A2(cx,p)C2(&~) [p2 ( cosel )

+ Aq(cx,P)C@,# [P4 ( cosel)

(6.4)

tl
+kP2(cose2) ] “~

tl
+kP4(cose2) ] “~ }.

To cancel out the orientation-dependent terms A2(cxQ,~Q) and A4(cxQ,@) in Equation

(6.4), the two angles of rotation and the time ratio k must be chosen such that

p2(c0se1)= –k oPz (cos02)
(6.5) p

P4(c0sel) = –k “P4 ( cosez) .

90° 90° 90°

tl/(k+l ) hop ktll(k+l )
o

t2

7A A ‘1 ._

b b

E). ;

x“ x“

Figure 6.2- Schematic of DAS experiment showing the timing of the rf pulses,
reorientation of the rotor axis, and the anisotropic lineshapes at each angle.

the
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Then Equation (6.4) simplifies to

which is a purely isotropic frequency. The indirect (q) dimension of a DAS experiment

will, therefore, show peaks at positions given by (in ppm)

106 C2 {[ ‘( )}-3 S(s+l)–: “ 2
qcc (6.7)

= ~:,:s) + _ . _ 1+~—
‘L ‘L 40 S2(2S -1)2 3

The first term on the right-hand side of Equation (6.7) is the isotropic chemical shift. The

second term on the right-hand side of Equation (6.7) is often called the second-order

isotropic quadrupolar shift. It can be extracted from DAS experiments or, with less

accuracy, from fits of quadrupolar powder lineshaFes. Note that this shift is inversely

proportional to the Larrnor frequency; DAS experiments performed a: different fields will,

therefore, have different isotropic shifts even when these shifts are expressed in ppm.

Many combinations of 01, 02, and k satisfy Equations (6.5) and are plotted in Figure 6.3.

Note that the magic angle is not one of the possible solutions. For technical reasons

related to sideband positions, only two solutions are practical for DAS experiments. 1t One

is the set (01 = 37.38”, 02= 79.19°, k = 1) and the other is the set (01 = 63.43”, 02= 0.00”,

k = 5). The latter set is compelling because of the possibility of correlating isotropic

chemical shifts with full, static powder lineshapes (obtained by spinning about O.OOO),but

specialized probe designs, which are not currently commercially available, are required to

irradiate samples at O.OOO.

Although the P2(cos0) contribution to the quadrupolar anisotropy is refocused in

the @l dimension of a DAS experiment (see Equation (6.5)), the homonuclear dipolar

couplings, which also have a P2(cosO) spatial dependence, will not be refocused. This is

-“
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due to the fact that the z-filter does not store all of the relevant spin operators for dipolar

coupling, prohibiting complete reversal of the dipolar Hamiltonian in the second half of

the experiment.izz Thus, DAS will not work well for samples with strong dipolar

couplings. DAS also can only be performed on samples with T1 relaxation times that

exceed the time it takes to reorient the sample (typically 30-50 ins). However, many

quadrupolar nuclei (such as 170) do have sufficiently long TI’s to permit DAS

experiments to be performed.

An advantage of DAS over DOR is its inherent two-dimensional nature which

permits the correlation of a high-resolution isotropic spectrum with site-specific,

anisotropic powder patterns. From such powder patterns, quadrupolar parameters can be

determined. Figure 6.4 shows an 170 DAS spectrum of A1P04-5 acquired with k=5 and

sheared (see Section 1.5.2). Two oxygen sites are present in the sample, and their

quadrupolar parameters were extracted from Iineshape simulations.

Many variations and extensions of the DAS experiment have been developed and

an in-depth discussion of most of them can be found in the thesis of J. H. Baltisberger. 11

80

1<

ez
~
E 60
a ---- ---- ---- ---- ---- ---- ---- ---- .
u)
s.— I

1 2 3 4 5

Time Constant k

Figure 6.3- Angle pairs which are solutions to Equations (6.5). For each value of k
(which is the ratio of the time spent at 62 to the time spent at 61), the corresponding values
of 61 and 62 can be read off. Note that the magic angle (represented by a dotted line) is
not one of the solutions to Equations (6.5).
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Figure 6.4 - 170 DAS spectrum of A1P04-5 showing the two sites and fits of the
anisotropic lineshapes for 02=63.43”.

6.1.3 Multiple-Quantum Magic-Angle Spinning (MQMAS)

While DOR and DAS use spatial manipulation of the sample to achieve high-

resolution spectra of quadrupolar nuclei, the Multiple-Quantum Magic-Angle Spinning

(MQMAS) technique achieves high resolution by manipulating the {Cn(S,m) } terms of

Equation (6. 1) while spinning only at the magic angle. Like DAS, MQMAS does its

averaging sequentially. First, a multiple-quantum coherence connecting the states +m I

and -ml is excited and allowed to evolve for a time period tl / (k + 1) . This is then

converted to a single-quantum coherence between the +1/2 and - 1/2 states. The single-

quantum coherence will evolve, and an isotropic echo will be generated at a time

kt, / (k+ 1) after the conversion.

Several different pulse schemes have been used for the excitation and conversion

of the coherence. The original experiment was performed using two selective 90” pulses

with a short delay (tens to hundreds of Ls) between them for excitation. The first pulse

generated t 1 quantum coherence and the second pulse converted them to multiple-

quantum coherence. 42 Excitation of a multiple-quantum coherence is also possible with a

,.,(}..< ,, -.. r.,.:,-,.,., ,,,:T, , .
.,..4 . . . . , ,.

“;>.-ay
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single long pulse.ss’zlz Although to first order weak rf-fields selectively excite only the

central transition, higher-order treatments show that multiple-quantum coherence can

also be excited to a limited extent. This has been described theoretically for the case of a
(IQ)

single crystal.2*3$214For on-resonance irradiation with ml s/~ <<1, it can be shown

that the effective nutation frequency of an n-quantum transition is of the order214*137

(@*s)n
(lQ) ‘-1

(Q )

(6.8)

where !i2(’Q) “1s defined in Equation (3.5). Because this nutation frequency is small, very

long pulse lengths are needed to generate appreciable amounts of multiple-quantum

coherence.214

Extension of the single-crystal treatment to a powder sample is not

straightforward.121 This is due to the orientation dependence of Q (1‘) , which means that

different crystallite will nutate with different frequencies even in a static sample.

Furthermore, the above method of excitation only works for the case where Ols is

IZQ)‘ for all values of m,significantly larger than mm* _m 214and the scheme” was predicted to

fail entirely for powder samples.121

Nonetheless, brute-force application of longer pulses has met with some success.

As expected, the excitation efficiency is highly dependent on crystallite orientation and

quadrupolar parameters as well as rf-field strength and spinning speed.s3*212Optimal pulse

lengths and strengths will, therefore, differ from sample to sample. The only general

consensus that has been reached so far is that high values of the Y-field strength (hundreds

of kHz) are superior to low values43 although this does not preclude performing the

MQMAS experiment with modest field strengths (see Figure 6.6).

The conversion of the multiple-quantum coherence to the single-quantum

coherence is even less efficient than the excitation.212 Fortunately, even a highly

inefficient conversion step will not significantly distort the anisotropic central-transition

powder patterns

these pattems.43

the intensities in

recorded during t2, provided the spinning speed exceeds the width of

The relative intensities of the different sites are distorted, however, and

the isotropic dimension cannot be used for quantitative purposes. At the
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time of this writing, no MQMAS pulse sequence reliably produces quantitative spectra;

improvement of the excitation and conversion schemes is currently an active area of

research.

Figure 6.5 shows a schematic of the single-pulse excitation version of the

MQMAS experiment. As in the case of DAS, the conditions

anisotropy can be easily determined. The signal at the time

Equation (6. 1) as follows

= ~{% [wml)+ WJci;)]“&

necessmy to eliminate the

tl can be calculated from

tl
+ A2(aJ0 [C2(S,n-+)+ kcz(s, ~)] P2(cos EI)” —k+l

tl
+ A4(a,~) [C4(S, ml) + kC4(& ~)] P4(cOse)” ~ }

r I I I

Excitation , Conversion

t, ktl
4

I+k
* 4

I+k

+ml
I

I

po I
-1

\

-ml

(6.9)

Figure 6.5- Schematic of MQMAS experiment. In this chapter, the time t, is deftned, for
theoretical simplicity, as the time required for the formation of the isotropic echo.
However, pure-phase spectra cannot be obtained using the times (tl ,tz) unless extra read
pulses are added.215 In practice, it is easier to start the acquisition immediately after the

reconversion pulse (using the times t,’ and t2’), and then shear the resulting two-
dimensional spectrum as described in the text.
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To eliminate the anisotropy, the last two terms on the right-hand side of Equation (6.9)

must be set to zero. At the magic angle, P2(cos6) equals zero. To eliminate the remaining

term, the only condition that must be met is

C4(S, ml) = -k . CA(S, $. (6.10)

s m C~(S,m) C~(S,m) C4(S,m)

3 1:
i T

3 24 54

3 3
i i

-9 0 -42

5: 1:
T z

8 64 144

5: 3
7 i

6 120 228

5: 5:
T 5“

-50 -40 -300

Table 6.1 - Table of scaling coefficients used to describe the second-order quadrupolar frequency of a
+m - -m coherence (see Equation (6.1)42). The values were calculated according to the formulas
CO(S,m) = 2m[S(S+ 1) -3m2] , C2(S, m) = 2m[8S(S+I)–12m2-3] and Cq (S, m) =
2m[18S(S +l)-34m2-5]!3

Note that a similar type of experiment could be performed while spinning at one of the

zeros of the fourth-order Legendre polynomial (0=30.56” or 0=70. 12°) and eliminating the

quadrupolar anisotropy by choosing k according to

C2(S, ml) =
1

–k . C2(S, ~) . (6.11)

This experiment is known as Multiple-Quantum Variable Angle Spinning and can be used

to extract chemical-shift parameters. 216In this thesis, only the magic-angle version will be

discussed, and values of k will be chosen according to Equation (6.10). The values of

{Cn(S,m) } for S=3/2 and S=5/2 are listed in Table 6.1; values for S>5/2 are tabulated

elsewhere.42143121GFor an MQMAS experiment on a spin-3/2 system, only one value of k is
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possible (k=7/9). For higher values of S, there is a choice of multiple-quantum coherence

and, therefore, more than one possible value of k. For instance, for a spin-5/2 system,

excitation of the triple-quantum coherence gives k=- 19/12 while excitation of the five-

quantum coherence gives k=-25/12.

The isotropic second-order quadrupolar frequency that results from the MQMAS

experiment is given (in ppm) by

~(2Q)
In,Wnp “& +d5!!@)“A22

C2
[

1.1$=~AO CO(S, ml)+ kco(s, ~) k + *..—

‘L

(6.12)

A comparison of Equations (6.12) and (6.6) shows that the second-order isotropic

quadrupolar shift in the MQMAS experiment differs from that in a normal MAS or DAS

experiment. The isotropic chemical shift will also be scaled since the chemical shift of an

n-quantum coherence is n times that of a single-quantum coherence. For an MQMAS

experiment, a weighted average of the two isotropic shifts can be calculated53

(6.13)

From Equations (6.7), (6. 12), and (6. 13), the observed shifts in the MQMAS experiment

will, therefore, be given by

(2Q)
where i5i~0 is the conventional “second-order quadrupolar shift” for the central

transition (see Equation (6.7)) and k is given by Equation (6.10).

Figure 6.6 shows 23Na 3Q/ 1Q MQMAS spectra of sodium pyrophosphate

(NaAP207) acquired using a single pulse for excitation and using hypercomplex shifted-

echo detection (see Section 1.5.2). Five-radian pulses

(corresponding to cols/(27c) = 25.5 kHz) were used for

177
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reconversion. After a delay of 3.5 ms, a softer 180° pulse with afield strength of 15.6 kHz

was used to form an echo. The detection period (tz’ ) was begun immediately after this

pulse. The first pulse was cycled in steps of 60° to select the H coherence transfer

pathways and the third pulse was cycled in 45” increments. The data were processed by

constructing echo and anti-echo data sets according to Equations (1.129) and (1.130).53

The top (unsheared) spectrum was obtained by directly Fourier transforming both

dimensions of both data sets (using Equation (1.140) where f = k/(1 + k) ), reversing

the ml’ dimension of the anti-echo data set, and summing the spectra. This leads to a

spectrum in which the multiple-quantum spectrum along @l’ is directly correlated with

3-

-15

-10-

-5-
..---------------

0- “---

210 -1-2
co;/(27T)[kHz]

~

-5-

0-

slope = k
----

*AF--*
““’LA

{

210 -1-2
[kHz]

210 -1-2
@(27L) [kHz]

Figure 6.6- 23Na MQMAS spectrum of sodium pyrophosphate (Na4P207). Both the
unsheared and sheared 2D spectra are shown as well as the isotropic dimension and
corresponding anisotropic powder patterns. Sixty hypercomplex pairs of tl slices with 96
scans in each were acquired with a 0.5 s recycle delay and a 30 ps dwell time. Asterisks
are used to denote spinning sidebands.
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the single-quantum MAS spectrum along (oz’. Because the anisotropic portions of each

dimension are related, sharp diagonal peaks result$3 Site-specific, quadrupolar-broadened

MAS lineshapes can be seen by taking skew projections along axes parallel to

%’ = kcoz’ .217

It is often more convenient, however, to view the spectrum with the isotropic

dimension along one axis and the anisotropic dimension along the other as was done for

the chemical-shift interaction in Chapter 5. One way to accomplish this is by shearing the

spectrum (see Section 1.5.2). The lower spectrum in Figure 6.6 was obtained by Fourier

transforming both data sets with respect to tz’ and then applying a phase correction of
+ikwz’tl’ -ikwz’tl’

e to the echo spectrum and e to the anti-echo spectrum. The rest of the

processing was the same as in the unsheared case. Because shearing effectively redefines

the time dimensions, the spectral width of the @l dimension in the sheared spectrum will

be a factor of (k+ 1) smaller than the ml’ dimension in the unsheared spectrum,

necessitating a resealing of this axis. Direct isotropic/anisotropic correlation spectra can

also be obtained by delaying the acquisition until the isotropic echo is formed215 although

additional pulses will be needed to obtain pure-phase spectra (see Section 1.5.2).

The MQMAS technique has been applied to many samples in the two years since it

was developed. It has several advantages over previous methods. Since it is performed at

the magic angle, the dipolar couplings will be averaged out, and there is no restriction on

TI relaxation times. In addition, the experiment can be performed on conventional MAS

equipment. However, the efficiency of the multiple-quantum excitation and conversion is

strongly dependent on CqCCwhich makes obtaining signals with quantitative intensities

difficult. Furthermore, excitation of high-order (ns3) multiple-quantum coherence in a

powder sample is difficult unless the quadrupolar coupling constants are small. A

discussion of the advantages and disadvantages of MQMAS relative to DAS is found in

the literature.21G

We were interested in seeing if the MQMAS experiment could be combined with

cross polarization (using conditions similar to those discussed in Chapter 4) to yield a new

technique for examining heteronuclear distances in solids. Before discussing our

technique, it is useful to review previous heteronuclear correlation experiments in solids.

...,, ,.,,. :’” .; ‘:?
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6.2 Heteronuclear Correlation and Quadrupolar Nuclei

6.2.1 MAS- and DAS-Based Techniques

HETeronuclear Correlation (HETCOR) experiments were first used in the

solution state to probe through-bond connectivities via J-couplings.4’218 They were later

applied to solids under both static and MAS conclitions.21g$220)22* In the solid-state cases,

the experiments rely on residual dipolar couplings. The connectivities that are measured

are therefore “through-space” rather than “through-bond,” and the results are inherently

qualitative. Nonetheless, solid-state HETCOR experiments have provided useful

information about proximities of different chemical species in many systems. They have

been used to characterize surface-adsorbate interactions and to assign peaks in

complicated spectra.

The most basic version of the HETCOR experiment in solids is simply a two-

dimensional extension of cross polarization in which the pulse that generates the

transverse magnetization is separated from the Hartmann-Hahn matched pulses by a time

period tl which frequency-labels the source spins (see Figure 6.7).221 The resulting two-

dimensional spectrum will then show cross peaks between sites in the MAS spectrum of

the first nucleus and sites in the MAS spectrum of the second nucleus that are spatially

near enough for polarization transfer to occur between them. More complicated pulse

sequences exist for cases in which homonuclear decoupling is necessa~. In addition,

there are variants which utilize a TEDOR-type coherence transfer step in place of the

CrOSSPOlarizadWlo 134!207

‘lLLEl-
S

+

Figure 6.7- Basic pulse sequence for HETCOR experiment.
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When the MAS spectrum of a quadrupolar nucleus is sufficiently well-resolved,

experiments which correlate the central transition of a quadrupolar nucleus with a spin- 1/2

nUdeUSCandSObeperformed.134*142s143>207,222 Figure 6.8 shows an 27A1/29Si MAS

HETCOR spectrum of low albite performed using 27A1-to-29Si CP with a linear amplitude

ramp on the 29Si (see Figure 4. 16). The proximity of the aluminum atoms to each type of

silicon site is evidenced by the presence of three cross peaks, although the peak intensities,

as in the one-dimensional CP case, are not quantitative.

If only one site of a given type is present, however, it is not necessary to perform a

two-dimensional experiment since the same qualitative information is obtainable from a

one-dimensional cross-polarization experiment. The HETCOR experiment is most useful

for samples which have multiple sites, but spectra of quadrupolar nuclei are often not

well-resolved under MAS. To extend the applicability of heteronuclear-correl ation

techniques to more samples containing quadrupolar nuclei, a high-resolution

heteronuclear correlation technique which combines Dynamic-Angle Spinning (DAS)

with cross polarization was developed by Jarvie et al.223 (see Figure 6.9). In this

90° 90” 90” 90” 90°

.._

31p 90” 90°

CP

O.OOO-“---”--------------------”-- . . . . . . . . . . . . . . . . . . . . . . . . . .

rotor

angie 37.38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(0) 54.74” -------- . . . . . . . . . . . . . . . . . . . .

79.19” .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 6.9- The DA!YHETCOR expe~ment of Jarvie et al.223 The experiment requires
three rotor axis reorientations per scan (plus one between scans). A DAS experiment
removes the quadrupolar anisotropy during the evolution period. Cross polarization is
then performed at a rotor angle of O“ (where it is most efficient). The sample is
subsequently reoriented to the magic angle for high-resolution detection of the spin-1/2
nucleus.
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experiment, the sample was first spun sequentially about the angles 79.19” and 37.38” with

respect to the B. field. The evolution times at the first and second angles were chosen

such that an isotropic echo was formed at the end of the tl evolution period (see Section

6.1.2). The magnetization was stored along B. using a z-filter while the sample was

reoriented a second time to O.OOO.Cross polarization from the quadrupolar nucleus to the

spin- 1/2 nucleus was carried out at this angle (where cross polarization from quadrupolar

nuclei is most efficientll*122). After a third reorientation (and z-filter on the spin-1/2

nucleus), the spin- 1/2 signal was finally recorded at the magic angle. While this

experiment gives high resolution in both the quadrupolar and spin-1/2 dimensions, it

requires three rotor axis reorientations during each scan and, therefore, cannot be used to

study nuclei with short T1’s such as 27A1 or 1lB. It also cannot be performed on

conventional equipment. The MQMAS-HETCOR experiment we developed circumvents

these problems.

6.2.2 MQMAS-HETCOR

The pulse sequence, coherence-transfer pathway, and phase cycle for the pure-

absorption mode MQMAS/HETCOR experiment is shown in Figure 6.10. As written, this

sequence can be used to correlate a spin-3/2 nucleus (such as 23Na) with a spin-I/2

31P) The same principles can be applied to construct analogous pulsenucleus (such as .

sequences involving higher multiple-quantum coherence if other odd-hzlf integer

quadrupolar nuclei are to be studied. The sequence depicted in Figure 6.10 shows that the

MQMAS evolution period is divided into two parts as described by Equation (6.12). A

single pulse is used for excitation of the triple-quantum coherence of the quadrupolar

nucleus and a second pulse converts the triple-quantum coherence into single-quantum

coherence.214’2U At the end of the evolution period (when the isotropic echo is formed),

magnetization is transfemed to the spin-1/2 nucleus by Hartmann-Hahn cross polarization,

31P spectrum is recorded.and then the The result is a heteronuclear correlation

experiment acquired under MAS with high-resolution in both dimensions.

The phase cycle shown in Figure 6.10 enables the collection of pure-absorption

mode two-dimensional spectra by retaining a pair of “mirror-image” coherence-transfer

pathways during the evolution period tl .4 The desired triple-quanturdsingle-quantum
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(0° 180”)~ (180° 0°)3 (90° 270”)~ (270° 90°)3
OR (180° 0“)~ (0° 180°)3 (270° 90°)~ (90° 270°)3

Figure 6.10- Pulse sequence, coherence-transfer pathway, and phase cycle for MQMASI
HETCOR. “Mirror image” coherence-transfer pathways are retained during the evolution
period so that two-dimensional pure absorption lineshapes can be obtained. The 96-step
phase cycle incorporates CYCLOPS46 cycling and spin-temperature altemation.47 The
second data set needed for States-type processing can be generated by shifting the phase
of 4)3by 9W.
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pathways for the MQMAS portion of the experiment are O+ 3 -+ 1 and O + –3 -+ – 1.

The phase of the first pulse is cycled through 60” steps to retain Apl=+3 and Apl=-3; the

phase of the second pulse is cycled through steps of 90° to retain Ap2=-2 and Ap2=+2 (see

Section 1.5). The accumulated phase at the end of tl is given by

~ (Api) ~i = API$I +AP20Z “
i

For the phase cycle and the two desired paths of Figure 6.10, this corresponds

{ (0°, 180°,0°,180°,0°,180°, 180°, O“, 180°, 0“, 180”>0°) ~} .

When this is combined with a constant-phase CP pulse, spin-temperature

automatically achieved.47

Note that any residual triple-quantum coherence that were not

(6.15)

to

(6.16)

alternation is

converted to

single-quantum coherence by the second pulse could potentially also be transferred in a

cross-polarization step since the effective nutation frequency of the triple-quantum

coherence (Equation (6.8)) would match the nutation frequency of the spin-1/2 nucleus at

some point during the rotor cycle. However, such coherence (corresponding to the paths

O + 3 + 3 and O + –3 + –3 ), would accumulate phases

{ (00, 180”, C)”,180”,0°,180”,00,180”, 0°, 180”,0°, 180°) z} . (6.17)

Proper cycling of the receiver in accordance with Equation (6.16) will cancel out such

triple-quantum signals.

To obtain a pure-phase, two-dimensional spectrum with frequency discrimination

in the al dimension, two amplitude-modulated data sets must be collected and processed

according to the method of States et al.51 In our experiment, this second data set is

generated by using a phase cycle identical to that shown in Figure 6.10, except with

43=90°. Finally, CYCLOPS4C phase cycling of @4 is included to eliminate receiver

imbalance. The complete phase cycle has 96 steps.

.,, .. .Y ..,. . . . . . . . .
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To test the MQMA!VHETCOR pulse sequence, experiments were performed on a

sample of anhydrous sodium trimetaphosphate (Na3P30g) which was prepared according

the method of Jarvie et al~n This is the same sample that was used to demonstrate the

feasibility of the DAWHETCOR experiment$23 and its crystal structure (as determined by

X-ray studieszu) is depicted in Figure 6.11. Sodium tt-imetaphosphate is known to have

two crystallographically distinct sodium sites and two crystallographically distinct

phosphorous sites; in both cases, the “general” site has twice the population of the

“mirror” site. Table 6.2 indicates the nearest Na-P distances.

Figure 6.12 shows the 23Na MQMAS spectrum of sodium trimetaphosphate

recor”ded at 11.7 T using shifted-echo, hypercomplex processing and shearing.53

The MQMAS/HETCOR spectrum of sodium trimetaphosphate is shown in Figure

6.13. The spectrum was recorded on a Chemagnetics CMX-500 spectrometer using a 7.5

mm Chemagnetics probe that was double-tuned to 131.894 MHz for 23Na and 201.850

MHz for 31P. Each of the first two pulses was 16 VS,corresponding to a 3fi rotation on the

central transition of sodium. This served to partially suppress the direct excitation of the

~ (general)

B CD/~ ,Na (general)-

%.= Na (mirror)L

F P (mirror)
@“”
~ P (general)

~=Na (general)

Figure 6.11- The crystal structure of Na3P309 as determined by X-ray crystallography.225
The crystal has orthorhombic symmetry. The two types of sodium and phosphorous sites
are indicated. Note that there are twice as many general sites as mirror sites. The nearest
Na-P distances are listed in Table 6.2.
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Na(mirror) to Na(mirror) to Na(general) to Na(general) to

P(mirror) P(general) P(mirror) P(general)

3.466 ~ 3.301 A 3.299 ~ 3.323 ~

4.686 ~ 3.434 A 3.380 A 3.452 ~

[5.728 ~] 5.675 ~ 5.458 ~ 3.584 ~

5.816A 5.622 ~ 4.614 ~

[5.892 kJ [5.987 ~] 4.770 A
4.810~
4.905 A
5.530 A

[5.702 ~]
[5.765 ~]

Table 6.2- Nearest distances between sodium and phosphorous sites in anhydrous sodium trimetaphosphate
as calculated from the X-ray structure. 225 All distances of under 6 ~ are listed. The unbracketed distances

were used to estimate theoretical peak intensities.

single-quantum coherence.53 The cross-polarization contact time was 10 ms and the

spinning speed was 5 kHz. The n=- 1 match-condition sideband (see Section 4.3) was used

for cross polarization and corresponded to a spin-lock strength of 4.6 kHz. This gave

adiabaticity parameters of cx<0.005 for the spin lock on both 231% sites, which is well

within the sudden regime. Thirty-five complex tl points consisting of 960 scans in each

were collected with a recycle delay of 3 s. The projections in each dimension show that

two peaks are observed for each nucleus, corresponding to the crystallographically distinct

6

2.5 0 -2.5

(i)J(2n) [kHz]

L* \\
i

r‘. ‘.* ‘~.

“~

.;=5
5 2.5 0 -2.5 -5

[kHz]

Figure 6.12- Sheared 23Na MQMAS spectrum of Na3P309. Thirty-one tl slices with 24
scans in each were acquired with a 3s recycle delay.
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sites.2M The two phosphorous peaks are at -18.7 and -15.5 ppm with respect to 85!Z0

H3P304 at O ppm, and the two peaks in the 23Na spectrum are at -6.1 and -21.5 ppm with

respect to solid NaCl at Oppm.

Table 6.3 lists the quadrupolar parameters and isotropic chemical shifts

(referenced to solid NaCl) for the two sodium sites in Na3P30g as previously determined

by Keller et al~2Gfrom fits of a one-dimensional MAS spectrum recorded at 9.4 T. The

values we obtained from fits of anisotropic slices of an MQMAS spectrum recorded at 4.2

T are also listed. By using these parameters and Equations (6.7) and (6.14), it was

possible to predict the positions of the peaks in DAS and MQMAS experiments performed

at various field strengths. These predictions are listed in Table 6.3 and are compared with

experimental results when they are available. Note that the measured values reported in

223were referenced to 001 M NaCl, which hm a chemic~ shift of 8=-7.2 ppmJarvie’s paper

relative to solid NaC1.22GTo make the comparison easier, all shifts are listed in the table

relative to solid NaC1.

0 -10 -20

ppmfrom solid NaCl

Figure 6.13- 23Nzd3‘P MQMAS/HETCOR spectrum of Na3P30g recorded with a cross
polarization contact time of 10 ms and a spinning speed of 5 IcHz. Thirty-five complex t~
points consisting of 960 scans in each were collected with a recycle delay of 3s.
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Parameter Source
General

Site
Mirror Site

c qcc Koller et al. 1.57 MHz 2.20 MHz

~ Keller et al. 0.55 0.70

~~:s) Keller et al. -5.60 ppm -14.80 ppm

c qcc our measurements 1.57 MHz 2.20 MHz

~ our measurements 0.55 0.64

~~:s) our measurements -5.20 ppm -15.07 ppm

calculation based on the

6~~s(9.4 T; calculated) quadrupolar parameters of -1147ppm -27.4 ppm

Keller et al.

calculation based on the

&~~s(9.4 T; calculated) quadntpolar parameters -11.3ppm -27.4 ppm
we determined

&~~s(9.4 T; measured) measured by Jarvie et al. -9.7 ppm -26.1 ppm

calculation based on the

~~~s(l 1.7 T; calculated) quadrupolar parameters of -9.5 ppm -22.9 ppm
Keller et al.

calculation based on the

~~~s(l 1.7 T; calculated) quadrupolar parameters -9.1 ppm -23.0 ppm
we determined

calculation based on the
&&As (1 1.7 T; calculated) quadrupolar parameters of -7.0 ppm -21.3 ppm

Keller et al.

calculation based on the
-6.2 ppm -22.1 ppm~MQMAs(l 17 T. calculated) quadrupolar parametersiso .,

we determined

~“QMAs(l 1.7 T; measured) our measurements -6.1 ppm -21.5 ppm1s0
-.

Table 6.3- Quadrupolar parameters, predicted shifts, and measured shifts for the “Na sites in Na3P309.
Shifts calculated both from the parameters of Keller et al.226and from our parameters are listed and are
compared to the DAS/HETCOR experiment of Jarvie et al.223and to our MQMA.YI-IETCOR experiment.
Predicted shifts for a DAS experiment at 11.7 T are also tabulated. All shifts are reported relative to solid
NaCl at Oppm.

..e. ,,. .;. y “ -.:,. .
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The positions of the peaks we measured in our MQMAWH13TCOR experiment

agree, within experimented errory with the theoretically predicted shifts. (The DAS shifts

of Jarvie et al. appear to deviate more from the predicted shifts, but the peaks are quite

broad and the resolution relatively low in the ml dimension. These factors could explain

at least some of the discrepancy.)

The 2-D MQMAWHETCOR spectrum (Figure 6.13) shows four distinct cross

peaks between the two 31P and two 23Na resonances. Correlation between the two nuclei

is principally through dipohir coupling, which results from both sodium sites being in

close proximity to both phosphorous sites. As in the DAS version of the experiment, the

measured intensities of the cross peaks in this new experiment may not yet be considered

quantitative. Cross polarization is often not quantitative even when quadrupolar nuclei are

absent, but in an idealized HETCOR experiment between spin-1/2 nuclei (using the pulse

sequence of Figure 6.7), peak intensities would be influenced by three factors: (1) the

population statistics (how many nuclei of each type are present), (2) the distances between

heteronuclei (which determine the rate of cross polarization), and (3) the relative

relaxation times (Tlp) of spins. in different sites. If the TIP’s for a given isotope are

similar, relative cross-peak intensities will be proportional to the rates of cross relaxation

which in turn are proportional to heteronuclear second moments.227 We can estimate

“ideal” relative intensities for the cross peaks in our system by using the distances from

Table 6.2 to calculate second moments. In this approximation, we assume that we can

average the angular-dependent terms over all powder orientations so all that remains is to

calculate the sum ~ 1/r~ over the nearest Na-P distances (the number of terms in the

sum being deterrnifi~ by the population statistics). The “ideal” relative intensities would

then be 1:0.7 :0.7:0.3 for the Na(general)/P(general), Na(general)/P(mirror), Na(mirror)/

P(general), and Na(mirror)/P(mirror) cross peaks, respectively.

In the MQMAWHBTCOR experiment, even further factors affect the cross-peak

intensities. First, as discussed in Chapters 3 and 4, cross-polarization dynamics of

quadrupolar nuclei are complicated under magic-angle spinning conditions by the time

dependence of the first-order quadrupolar interaction. This is not the case for the DAS/

.HETCOR experiment since the polarization transfer occurs at O“ to BO, permitting

attainment of the full, static cross-polarized intensity. 11The second factor that complicates
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the quantification of the MQMAWHETCOR experiment is that both the excitation of the

triple-quantum coherence and its conversion back to single-quantum coherence depend

strongly upon the rf excitation power and the quadrupolar parameters.2]2 For the

excitation and conversion pulses that we used (see Figure 6.12), the site with the greater

Cqcc had one-quarter the intensity of the other site, despite the fact that its population is

one half that of the other site. The measured relative cross-peak intensities for the

spectrum in Figure 6.13 are 1:0.5 :0.2:0.1 for Na(general)/P(general), Na(general)/

P(mirror), Na(mirror)/P(general), and Na(mirror)/P(mirror), respectively, which deviates

from the ideal case due to these complications. Modifications of the original MQMAS

experiment to make the intensities closer to quantitative have been proposed by Wu et

al.,228and this is currently an active area of research in many laboratories. However, it is

important to note that the qualitative appearance of our MQMAWHETCOR spectrum is

similar to the DAS version; the DAS experiment is also not strictly quantitative.223

The advantage of combining the MQMAS experiment with the HETCOR

experiment is immediately obvious when Figure 6.13 is compared with a normal MAS

HETCOR spectrum of Na3P309 (Figure 6. 14). Even though the second-order quadrupolar

23Na dimension for this sample stillinteraction has not been completely averaged, the

exhibits relative] y high resolution because of the significant differences in C~CC,q, and

6 ‘Cs) between the two sites.iso However, even for this ideal case it is clear that the

MQMAWHETCOR experiment gives superior resolution. For more complex systems

where the 23Na dimension is not so well resolved, such as sodium phosphate glasses, the

MQMAWHETCOR experiment should be of significant utility.

In principle, the heteronuclear correlation experiment could be applied in reverse,

transferring the magnetization from 31P to 23Na and then performing the 3Q/1 Q MQMAS

23Na dimension (possibly with direct crossexperiment to obtain high resolution in the

polarization of the triple-quantum transition which would occur nine times faster than

single-quantum cross polarization for a given spin-lock field strength on the 31P

channe113b’138). However, performing the experiment in this way has two major

drawbacks. The first is that the experiment would, in effect, become a three-dimensional

experiment, increasing the time required to collect the data. The second disadvantage is

that the T 1 of sodium is typical] y much shorter than that of phosphorous due to the

..r. --,-f-+-> ,7: :,.,..:-.,, T,?. - - ?y.- --- ,T; -,

.
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efficiency of quadrupolar relaxation mechanisms. For example, in Na3P30g the delay

between scans necessary to prevent significant saturation of the signal is 3 s for 23Na and

660 s for 31P; performing cross polarization from 31P to 23Na would increase the

experimental time prohibitively.

Although cross polarization is less efficient for samples spun at the magic angle

than for samples spun at an angle of 0° with respect to the static field,122 the MQMAS/

HETCOR experiment has several advantages compared to the DAS version. The main

advantage is that high-resolution HETCOR spectra may be obtained from quadrupolar

nuclei using a conventional MAS NMR probe. Our experiments were performed using an

unmodified Chemagnetics probe with a 7.5 mm rotor and an rf field strength of only 42

kHz for the multiple-quantum coherence excitation. As double-resonance MAS probes

are available in most solid-state NMR laboratories, this simplification will enable this

O: .12.5
n
rm -15

1-
0 -10 -20

ppmfrom solid NaCl

+

31p

Figure 6.14- A conventional two-dimensional 23Na/31P MAS HETCOR spectrum of
Na P309 recorded under similar conditions to those in Figure 6.13. The 9& pulse length

23of Na was 27 ~, the cross polarization contact time was 10 ms, and the spinning speed
was 5 kHz. Thirty-two complex tl points consisting of 256 scans were collected with a
recycle delay of 3s.
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experiment to be widely applied. In contrast, the DAWHETCOR experiment 223requires a

static-coil dynamic-angle spinning probe that is capable of cross polarization at 0° with

01551156such probes are not currently commercially available.respect to Bo,

A second advantage of the MQMAWHETCOR experiment is that, potentially, the

resolution of the 23Na dimension will be greater than that observed in the DAWHETCOR

experiment, hence increasing the possibility of separating signals from sites with similar

chemical environments.21b This arises from scaling of the chemical and quadrupolar shifts

in the 3Q/1 Q MQMAS experiment on an S=3/2 nucleus by 17/8 and -5/4, respective y

(see Equation (6. 14) and Table 6.1). In Table 6.3, peak positions for both a DAS and an

MQMAS experiment at 11.7 T were calculated for the sodium sites in Na3P309.

Although the numerical values differ slightly depending on” which set of quadrupolar

parameters are used, the dispersion in the MQMAS spectrum is greater than that in the

DAS spectrum in both cases.

A third advantage of the MQMAWHETCOR experiment, and the most important

for its application to a wide variety of materials, is that samples with short TI’s may be

investigated. DAWHETCOR is limited to samples where T 1 is greater than about 150 ms

since the typical time required to flip the spinning axis is about 40 ms, and the experiment

requires three sample reorientations (see Figure 6.9). This has previously excluded the

27A] and 1lB systems.study of many

,’ “,,’ .““”~. ‘“ “.’,:-,,
~y,. .
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Chapter 7: Reversal of Radiofrequency-Driven Spin

Diffusion by Reorientation of the Sample-

Spinning Axis

The previous three chapters have examined heteronuclear polarization transfer in

the form of cross polarization. In this chapter, we wi!l be concerned with homonuclear

polarization transfer, or “spin difision, “ in systems of spin-1/2 nuclei. In particular, we

will demonstrate that it is possible to reverse the process of rf-driven spin diffusion by

changing the orientation of the sample-spinning axis relative to the static magnetic field.

7.1 Previous Polarization-Echo Experiments

The ability to manipulate the nuclear spin Hamiltonian during the course of an

NMR experiment has permitted the observation of a variety of echo effects. The well-. .

known echo experiments by Hahn**gdemonstrated that inhomogeneous interactions could

be refocused by two radiofrequency pulses. Since then, spin echoes have also been

observed in homogeneously broadened systems. The “magic-echo experiment”

introduced by Schneider et al.230and Rhim et al.23*showed that it was possible to induce a

“time reversal” of the free-induction decay (FID) in a dipolar-coupled spin system. Llor et

al.232reported the observation of the time reversal of isotropic many-body spin couplings

in zero-field NMR.

More recently, several experiments have demonstrated the possibility of

refocusing the process of homonuclear polarization transfer, or “spin diffusion,’’233 in

extended spin systems. Exploiting the fact that the truncated dipolar Hamiltonians in the

rotating and laboratory frames have opposite signs,5 Zhang et al.234 designed a pulse

sequence to refocus proton spin diffusion in a static sample. Karlsson et al.23s and

Tomaselli et al.23Gshowed that the polarization-transfer process could also be refocused

under MAS237Y238conditions by using rotational-resonance recoupling2J9*240 or rotor-

synchronized multiple-pulse sequences. The formation of such polarization echoes

clear] y demonstrates the deterministic quantum-mechanical nature of the “spin-diffusion”

process even though it can in some cases be approximated by a diffusion

equation .8,233,241,242
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The dependence of the NMR Harniltonian on both spatial and spin variables7>8

suggests that the process of spin diffusion might also be reversible by a mechanical

sample reorientation. It has previously been shown that a “magic echo” of the free-

induction decay can be induced in an oriented liquid-crystalline sample by changing the

angle between the director and the external magnetic field.243 In this chapter, it will be

shown that a time reversal of spin diffusion can be achieved by switching the axis of

sample rotation during a radio-frequency-driven spin-diffusion experiment.2a

7.2 Spin Diffusion

The term “spin diffusion” is commonly used to refer to the transfer of polarization

“231~2 This process is meditated through the zero-quantum “flip-flop”among like nuclel.

term in the dipolar Hamiltonian (the second term on the right in Equation (1.72)) and is

very efficient when the nuclei have the same resonance frequency. When the nuclei have

different frequencies, however, the “flip-flop” is not energy-conserving, and polarization

transfer will not occur unless the system can obtain compensating energy from another

source.

Among protons, spin diffusion occurs readily since chemical-shift differences are

small relative to dipolar couplings. However, the opposite is the for rare spins such as

natural abundance 13C. The rate constant for spin diffusion, Wjk, between two spins Sj

and sk in a static sample can be estimated using Fermi’s Golden Rule’>g

Wjk = fs2bjff, j~Fj~(0) (7.1)

where s is a pulse-sequence-dependent scaling factor, and beffjk is the effective dipolar

coupling frequency (explicit examples of which will be given below). The term Fj~(0) is

the intensity of the normalized zero-quantum spectrum of the two spins at frequency

zero; 8’x5’24bit represents the fraction of transitions which

zero-quantum line is centered at the difference frequency

Figure 7.1 ) which means that the closer their frequencies,
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For natural-abundance 13C spins, chemical-shift differences will often be much

greater than the dipolar-coupling frequency, which would seem to imply that Fjk(0), and,

hence, the rate of spin difh.tsion, wotdd be zero. However, coupling to an abundant proton

bath can broaden the zero-quantum line so that spin diffusion is possible. This mechanism

is commonly known as “proton-driven” spin diffusion although it is important to realize

that the magnetization is not transferred to the protons during this process.23

Proton-driven spin diffusion can be measured using a two-dimensional pulse

sequence that is identical to that used to measure chemical exchange (see Figure 2.7).

After cross polarization and a frequency-labeling period (tl), spin diffusion is permitted to

occur during a mixing time (in the range of hundreds of milliseconds to hundreds of

seconds), and then the signal is recorded. Such experiments have been used to determine

relative tensor orientations248 y249and to probe proximities in heterogeneous materials23

The rate of proton-driven spin diffusion tends to be very slow because Fjk(0), though not

zero, is still small (see Figure 7. la). However, the rate of spin diffusion among rare spins

can be significantly enhanced by coupling the system to mechanical rotation of the sample

.

a) b)

Figure 7.1- Schematic of zero-quantum Iineshapes for (a) proton-driven and (b) rf-driven
spin diffusion between a pair of spins. The zero-quantum Iineshape is assumed to be
Lorentzian247and is centered at the difference frequency of the two spins. The rate of spin
diffusion is proportional to the intensity of the zero quantum lineshape at zero frequency.
The rf-driving process both narrows the width of the zero-quantum line and moves its
center closer to zero frequency, dramatically enhancing the rate of spin diffusion.
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during MAS (“rotor-driven” spin diffusion)23912@or by using rf fields to reduce chemical-

shift differences (“rf-driven” spin diffusion) .2M’250The faster rates permit studies of short-

range order.

In rf-driven spin diffusion, a spin-lock field of strength Ols is applied to the dilute

S spins (’3C, 15N) during the mixing time. 2M’fi0This spin-lock field scales the chemical-

shift differences among the S spins virtually to zero and decouples them from the

abundant I spins (*H). These effects enhance the rate of spin diffusion among the dilute

spins by several orders of magnitude by moving the center of the zero-quantum line closer

to 0) = O and by narrowing its Iinewidth (see Figure 7. lb).2ut245 For a spin-lock field

which is applied along the x-axis in the rotating frame and exceeds the dipolar interactions

in its strength, the average Hamiltonian which drives the spin-diffusion process in a static

sample is given to zeroth order by

(7.2)

wheres is a scaling factor that equals -~ for an on-resonance, continuous-wave (CW)spin

lock5 and bjk is an effective dipolar coupling frequency

1) = _djkP2(C0s~jk) . (7.3)

The angle of the internuclear vector of the spins j and k with respect to the external

magnetic field is given by ~jk, and djk is the dipolar coupling constant.

The truncated Hamiltonian of Equation (7.2) is rendered time-dependent by

sample rotation about an axis inclined at an angle (3from the direction of B0.7’25* Under

the condition sbjk <<Or f<O)~~, zeroth-order average-Hamiltonian theory can again be

applied to the Hamiltonian already truncated by the rf field. This approximation

corresponds to neglecting all of the time-dependent terms, and the secular Hamiltonian for

the spin-diffusion process in the rotating sample becomes

%!?= pz(coso) S ~ fibjk(rjk, ~jk) [3sjxskx - (Sj “Sk)] = P2(cose)~S . (7.4)

j<k

.. ...=.... ,, . .- ,,?“’-..:‘;;;:{.:.,. ,-.,” ..~’ ,., .. ,~.; . ....>.
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Note that the effective dipolar frequency bjk(rjk, f!jk) now depends on the angle between

the internuclear vector and the rotor axis and that the Hamiltonian is proportional to the

second-order Legendre polynomial of the cosine of the angle between the rotor and the

static magnetic field. In the case of magic-angle spinning, P2(cos 54.74°) equals zero,

and special recoupling sequences are needed to drive the spin diffusion .252$23c

7.3 Reversal of Rf-Driven Spin Diffusion

7.3.1 Pulse Sequence and Experimental Apparatus

The presence of the scaling term P2(cosO) in Equation (7.4) provides the

experimenter with the possibility of switching the sign of the Harniltonian that governs rf-

driven spin diffusion by changing the orientation of the rotor axis relative to BO. The rf

pulse sequence shown in Figure 7.2 takes advantage of this property and represents a new

type of polarization-echo experiment.2~’23G

Hartmann-Hahn cross polarization] ll’227is used to polarize the S spins during a

preparation period ~cp while the sample is spun about an axis oriented at the angle

el=35.25” relative to Bo. After a frequency-labeling period tl, a cw spin-lock is applied.

For a time Zl, rf-driven spin diffusion occurs with a scaling factor of

P2(cos 35.25°) = 0.5. During the time Zz, the sample is rapidly reoriented to 02=900,

and the spins evolve under a driving Hamiltonian with a scaling factor of

P2(cos900) = -0.5. The signal is then acquired for a time tz. It is easily seen that the
-iPz(cos O1)!K~zl/fi -iPJcos@2)9fsT#h

propagator e e is the unity operator if t ~ = ~z, and an

echo occurs at that point in time, even for many-body interactions. Obviously, an echo

can also be formed with other combinations of Ell and E12.

Although a polarization echo could also be observed in a one-dimensional

experiment with selective excitation, the two-dimensional version4 allows one to

distinguish the contributions of spin diffusion from those of TIP relaxation.

To implement the echo pulse sequence of Figure 7.2, a home-built double-

resonance probe in which a stationary coil surrounds a movable stator (see Figure 7.3) was

used. A stepper motor connected to a Whedco IMC-1151 -1-A controller was used to

rapidly reorient the rotor axis during the experiment to within _M1.62”.10’w Details of the

198



probe design, which was originally developed for use in DAS experiments, are described

elsewhere. 1°’155The use of such a probe permitted continuous application of the rf spin

lock during the mechanical hop. It was not possible to avoid irradiating the S-spins during

the hop by using ~ storage pulses~3 since the fill dipolar order could not be retained. 122

All spectra in this chapter were recorded on a home-built spectrometer with a lH

Larmor frequency of 301.2 MHz and a 13C Larmor frequency of 75.7 MHz. Adamantane

was purchased from Aldrich and used without further purification. The amount of time

I I I 1
I I I I

,
~ 35.25” I

w

I
I
I

e.------.---------+$ ,\ 60 ~O.,\
,\

\
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J ;+

b

----.

‘hop
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Figure 7.2 - Pulse sequence for refocusing rf-driven spin diffusion by sample
reorientation. Hartmann-Hahn cross polarization**1*Z7is used to enhance the polarization
of the S spins. The S spins are frequency-labeled during the evolution time, t1. For the
entire mixing period, spin diffusion among the S spins is driven by a cw spin lock.2a’250
In the defocusing period, tl, the sample is spun at the angle 61=35.25”. During the
refocusing time, ~2, the rotation axis is rapidly reoriented to (12=90”,and the rf-dnven spin
diffusion is time reversed at ?2 = r, . Proton decoupling is applied during both the
evolution (tl) and detection (t2) periods.
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necessary to reorient the sample was approximately 10 ms. The spinning speed was 5.3

lcliz; the rf field strengths were COl~/ (27c) =@l~/ (27c) =20 kHz and the cross-

polarization contact time was 5 ms. The 13C carrier frequency was positioned exactly

between the two ‘3C resonances in adamantane for the most efficient chemical-shift

sca~ing during the cw driven spin difision period. W)245)M0

7.3.2 Build-up of Cross-Peak Intensity

The build-up of the cross-peak intensity during the time ZI with Z2=0 (see Figure

7.2) scales linearly with IP2(COSOI)I. Here, we interpret the rf-driven spin diffusion as a

deterministic quantum-mechanical process described by the Hamiltonian, ~~~ (Equation

(7.4)). This can be seen by performing a series expansion about zl=O~18 Assuming that

our system has two distinguishable sites, the intensity of the A + B cross peak is given

by

- (-i) n (Z1 p2(c0sel)) ‘M
=

E n! n
n=O

removable stator housing fixed
endca ap

(7.5)

Figure 7.3- Probe design used in experiments. The stator housing was attached to a
pulley which was controlled by a stepper motor so that the rotor angle could be varied
during the course of the experiment. 10’155The stationary coil permitted rf irradiation to be
continuously applied during the reorientation.
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where F: is the sum magnetization for the spins of type B and the Mn denote the

moments of the series expansion5>778

(F: (@z) nF: )
Mn =

(F~lF~ ) “
(7.6)

The scaling behavior can be observed experimentally by performing 13C rf-driven

spin diffusion on polycrystalline adamantane for different values of P2(cos (3,). The

largest value for ]sbj~ / ( 27c) is 11 Hz for the carbons in natural-abundance adamantane

so the condition sbj~ ~(O)r<tCOls can easily be satisfied. In our experiments,

o)r/ (2X) = 5.3 kHz and col~/ (27c) = 20 kHz. Figure 7.4 shows the buildup of the

normalized cross-peak intensity from rf-driven spin diffusion in adamantane as a function

of P2(cos O~) x ~1 for three different angles 01. To within experimental error, all three

sets of data points lie on the same curve.

The same scaling behavior results when first-order, time-dependent perturbation

theory 118’23is used to describe the polarization-transfer process. The spin-diffusion rate,

Pjk,between two spins Sj and sk in a rapidly rotating sample can be written aS1’8

‘jk(z ~) = Wjkq = ~s2(p@Sel)) 2[bjk(rjk,Bjk)] 2Fjk(o) “ ~1. (7.7)

Note that the rate constant was calculated using Fermi’s Golden Rule (see Equation (7. 1))

and taking into account the sample rotation (see Equation (7.4)). In the ideal case of rf-

driven spin diffusion, the abundant I spins are completely decoupled from the S spins and,

therefore, l?jk(o)scales with ISP2(COS@~)bj~l-l . This leads to

Pjk(~l) = Isbjkl “ (T11P2(cose1)p . (7.8)

Equations (7.7) and (7.8) predict that the rf-driven spin-diffusion rate constant, Wjkj scales

with 1/r~k in contrast to the proton-driven case where Wjk k proportional tO I /r~k .245’246
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It is interesting to compare the experimental polarization-transfer dynamics with

statistical approaches. The three curves shown in Figure 7.4 result from a

phenomenological, ad-hoc model of the spin-diffusion process in natural-abundance 13C

adamantane assuming a master equation for the polarization (pi = ( Six)) exchange

:P =W”p. (7.9)

W represents the polarization-exchange matrix where Wjk is evaluated according to

Equation (7.7) with 61=00 and the diagonal elements are defined as Wjj = – z Wkj to

conserve the sum polarization.4 An fcc lattice of 1000 adamantane mol&~es

0.2 i I , 1 1 , I 1 , I

0.18
‘1

0.16
t

●
☞

☞

✎✎✍

.“.,
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,/r— 0.08 “
*

0.06

0.04

0.02 Ii+e=oo
● 61= 35.25”

* e=900

o 20 40 60 80 100 120 140 160

lP2(cos01)lq [ins]
Figure 7.4- Experimental build-up of the normalized rf-dnven spin diffusion cross-peak
intensity in 13Cnatural-abundance adarnantane as a function of IP2(cos13,)x ‘t,I for ol=~,
35.25”, and 90. The curves were numerically calculated from a kinetic master equation
for the polarization exchange process (Equation (7.9)) and represent three different model
assumptions used for the evaluation of Wjk as described in the text. Qualitative agreement
with the experimental data is obtained when a uniform and constant normalized zero-
quantum intensity of Fjk(0) = F(0) = (7*2) X10-2s is assumed.

was
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constructed with a nearest distance of 6.6 ~ between molecular centers.254 Due to the fast

rotational dynamics of adamantane molecules at 300 K, the intramolecular dipolar

interactions are averaged to zero, and the observed polarization transfer reflects only

intermolecular dipolar interactions. The S-spin lattice sites were occupied by using a

random number generator and considering the probabilities of 13CH2 and 13CH

occurrence at natural abundance.255 It was assumed that no more than two *3C atoms were

present in a single molecule. The matrix elements, ~jkj of W were evaluated separately

for each dipolar-coupled spin pair using Equation (7.7) with O1=OO.

The three curves in Figure 7.4 represent three different model assumptions used

for the evaluation of Wjk. The dotted curve was generated using the approximation that

((1 - 3cos2~jk) 2)~~~d~~ = 4/5 for each spin pair. * The dashed curve was obtained by

performing an explicit powder average over 1000 orientations using the method of Cheng

et al.38(see Section 1.3). The solid curve was obtained by additionally taking into account

the fast rotational diffusion of the adamantane molecules on their lattice sites which leads

to a motionally averaged internuclear distance (rjk) and angle ( ~jk) .255All three curves

represent an average over 100 different randomly occupied S-spin lattices. Qualitative

agreement with the experimental data is obtained when a uniform and constant normalized

zero-quantum intensity of Fj~(0) = F(0) = (7 ~ 2) XIO-Z s is assumed. This leads to a

Iinewidth of the normalized S spin zero-quantum spectrum of 10-14 Hz assuming a

Lorentzian or Gaussian shape and agrees well with the strength of the 13C-13C dipolar

couplings in natural-abundance adamantane ( sb~x / (2x) = 11 Hz) .

The time dependence of the polarization transfer is clearly non-exponential due to

the statistical distribution of the 13C spins on the lattice sites. For ~1 S 30 ms, the 13CH

and 13CH2 pairs on neighboring molecules predominantly contribute to the cross-peak

intensities. For longer times, more remote spin packets (within the next nearest neighbor

shell for the plotted time range) start to contribute as well, leading to a flattening of the

build-up curve. Due to the isotopic dilution and the crystal structure of adamantane, the

spin-diffusion dynamics appear to follow the predictions made for coupled clusters of

spins.177
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7.3.3 Spin-Diffusion Echoes

Figure 7.5 shows a set of three two-dimensional spectra of adarnantane obtained

with 71=30 ms and different values of ~z In Figure 7.5a, Z2=0 ms and the sample was

spun at 611=35.250. Rf-driven spin difision proceeded according to the Hamiltonian of

Equation (7.4) with the scaling factor P2(cos 01) = 0.5, and the spin-diffision cross

peaks are clearly visible. Figure 7.5b shows the spectrum corresponding to the

polarization echo. In this experiment, the S-spin system evolved under a Hamiltonian

with a scaling factor of P2(cos O~) = 0.5 for ZI=30 ms. The sample was then reoriented,

and the evolution continued with a scaling factor of P2(cos (lZ) = –0.5 for ‘C2=50ms. The

opposite signs of the scaling factor during Z1 and 72 caused the evolution of the

polarization transfer to refocus, and the cross-peak intensity approached zero. Since a

finite time was required for the sample reorientation, the polarization echo was delayed

and occurred at ~2 = 1.371. Figure 7.5c shows the case where ~2 was much greater than

Z1. In this spectrum, the cross-peak intensity has recovered and reached a value exceeding

that shown in Figure 7.5a.

The complete time evolution of the echo is depicted in Figure 7.6. The normalized

cross-peak intensities are plotted as a function of total mixing time for ~1=30 ms (Figure

7.6a) and ZI=70 ms (Figure 7.6b). For the experiments with the shorter rl time, the

refocusing of the spin diffusion is nearly complete, but at longer times the echo, though

sharp, is weaker in amplitude. The reason for this is unclear. One possibility is that the

strength of the ‘3C rf field used in these experiments (cols/(2n)=20 kHz) may not be

sufficient to fully decouple the abundant proton spins. The residual heteronuclear dipolar

coupling Hamiltonian, ti ~~, and the homonuclear dlpolar coupling among the I spins, tiII,

will not be inverted by the sample reorientation since the spinning speed (co~(2z)=5.3

kHz) is not fast compared to these interactions. Consequently, the S-spin polarization

echo amplitude will be damped. The flatness of the echo peak in Figure 7.6a is due to the

finite time required for sample reorientation. The evolution during the reorientation is

difficult to quantify since it is not known precisely how much time the sample spends at

each angle. Furthermore, the scaling factor, P2(cos (1), varies non-linearly with 0, and the
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Figure 7.5 - Experimental two-dimensional 13C rf-driven spin diffusion spectra of
adamantane. For the two-dimensional spectra, 90 complex tl points consisting of 16

scans in each were collected according to the method of States et al.51 The delay between

experiments was 3.5 s. (a) Rf-driven spin diffusion spectrum obtained at 01=35.25” (no
axis reorientation) with a mixing time of 71=30 ms. Cross peaks due to spin diffusion are
clearly visible. (b) Echo experiment obtained using the pulse sequence of Figure 7.2 with
T1=30 ms and T2=50 ms. The spin diffusion has been refocused, and the cross-peak

intensity is nearly zero. Note that the orientation of the diagonal peaks has changed due to
the sign change of P2(coN3) (which affects residual chemical-shift, dipolar, and bulk
susceptibility interactions during the evolution and detection periods). (c) Experiment
obtained using the pulse sequence of Figure 7.2 with 71=30 ms and T2=110 ms. The
longer evolution at the second angle led to a recovery of the cross-peak intensities. In all
three spectra, the contours are at 3, 5, 7, 9, 11, 13, and 15% of the maximum signal
intensity.
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Figure 7.6- Time evolution of the normalized cross-peak intensity in adamantane. The
circles and asterisks show the cross-peak build-up as a function of mixing time for rf-

driven spin diffusion at angles of 01=35.25” and 90”, respectively. The crosses show the
cross-peak intensities as a function of time for the echo experiment of Figure 7.2 with (a)
T1=30 ms and (b) 71=70 ms. The time at which the hop is initiated is indicated by a
vertical line in each graph.
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sign change occurs at an angle (e=54.74°) that is closer to 35.25” than to 90”. For these

reasons, the echo position will be sensitive to instabilities in the mechanical reorientation

process, leading to a broadening of the echo maximum for ‘TI= I~OP-

In summary, a new type of polarization echo has been introduced. We have

experimentally demonstrated that the spin-diffusion process can be refocused by a

13C polarization echoes were observed formechanical sample reorientation. Rf-driven

mixing times on the order of 100 ms, which is more than two orders of magnitude longer

than the time scale for previously observed proton dipolar echoes.2~123c Although rf-

driven spin diffusion in adamantane can be qualitatively described by a master equation

for polarization exchange, such an approach obviously fails to describe the formation of

the echoes.
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