Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

First-Principles and Experimental Investigation of ABO4 Zircons as Calcium Intercalation Cathodes

Abstract

Identifying next-generation batteries with multivalent ions, such as Ca2+ is an active area of research to meet the increasing demand for large-scale, renewable energy storage solutions. Despite the promise of higher energy densities with multivalent batteries, one of their main challenges is addressing the sluggish kinetics in cathodes that arise from stronger electrostatic interactions between the multivalent ion and host lattice. In this paper, zircons are theoretically and experimentally evaluated as Ca cathodes. A migration barrier as low as 113 meV is computationally found in YVO4, which is the lowest Ca2+ barrier reported to date. Low barriers are confirmed across 18 zircon compositions, which are related to the low coordination change and reduced interstitial site preference of Ca2+ along the diffusion pathway. Among the four materials (BiVO4, YVO4, EuCrO4, and YCrO4) that were synthesized, characterized, and electrochemically cycled, the highest initial capacity of 81 mA h/g and the most reversible capacity of 65 mA h/g were achieved in YVO4 and BiVO4, respectively. Despite the facile migration of multivalent ions in zircons, density functional theory predictions of the unstable, discharged structures at higher Ca2+ concentrations (Cax>0.25ABO4), the low dimensionality of the migration pathway, and the defect analysis of the B site atom can rationalize the limited intercalation observed upon electrochemical cycling.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View