Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

3-D X-Ray-Induced Acoustic Computed Tomography With a Spherical Array: A Simulation Study on Bone Imaging

Abstract

X-ray-induced acoustic computed tomography (XACT) is a promising imaging modality combining high X-ray absorption contrast with the 3-D propagation advantages provided by high-resolution ultrasound waves. The purpose of this study was to optimize the configuration of a 3-D XACT imaging system for bone imaging. A 280 ultrasonic sensors with peak frequency of 10 MHz was designed to distribute on a spherical surface to optimize the 3-D volumetric imaging capability. We performed both theoretical calculations and simulations of this optimized XACT imaging configuration on a mouse-sized digital phantom containing various X-ray absorption coefficients. Iteration algorithm based on total variation has been used for 3-D XACT image reconstruction. The spatial resolution of imaging was estimated to about [Formula: see text] along both axial and lateral directions. We simulate XACT imaging of bone microstructures using digital phantoms generated from micro-CT images of real biological samples, showing that XACT imaging can provide high-resolution imaging of the mouse paw. Results of this study will greatly enhance the potential of XACT imaging in the evaluation of bone diseases for future clinical use.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View