- Main
A Disulfide-Stabilized Aβ that Forms Dimers but Does Not Form Fibrils.
Published Web Location
https://doi.org/10.1021/acs.biochem.1c00739Abstract
Aβ dimers are a basic building block of many larger Aβ oligomers and are among the most neurotoxic and pathologically relevant species in Alzheimers disease. Homogeneous Aβ dimers are difficult to prepare, characterize, and study because Aβ forms heterogeneous mixtures of oligomers that vary in size and can rapidly aggregate into more stable fibrils. This paper introduces AβC18C33 as a disulfide-stabilized analogue of Aβ42 that forms stable homogeneous dimers in lipid environments but does not aggregate to form insoluble fibrils. The AβC18C33 peptide is readily expressed in Escherichia coli and purified by reverse-phase HPLC to give ca. 8 mg of pure peptide per liter of bacterial culture. SDS-PAGE establishes that AβC18C33 forms homogeneous dimers in the membrane-like environment of SDS and that conformational stabilization of the peptide with a disulfide bond prevents the formation of heterogeneous mixtures of oligomers. Mass spectrometric (MS) studies in the presence of dodecyl maltoside (DDM) further confirm the formation of stable noncovalent dimers. Circular dichroism (CD) spectroscopy establishes that AβC18C33 adopts a β-sheet conformation in detergent solutions and supports a model in which the intramolecular disulfide bond induces β-hairpin folding and dimer formation in lipid environments. Thioflavin T (ThT) fluorescence assays and transmission electron microscopy (TEM) studies indicate that AβC18C33 does not undergo fibril formation in aqueous buffer solutions and demonstrate that the intramolecular disulfide bond prevents fibril formation. The recently published NMR structure of an Aβ42 tetramer (PDB: 6RHY) provides a working model for the AβC18C33 dimer, in which two β-hairpins assemble through hydrogen bonding to form a four-stranded antiparallel β-sheet. It is anticipated that AβC18C33 will serve as a stable, nonfibrilizing, and noncovalent Aβ dimer model for amyloid and Alzheimers disease research.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-