Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Surface-redox sodium-ion storage in anatase titanium oxide.

Abstract

Sodium-ion storage technologies are promising candidates for large-scale grid systems due to the abundance and low cost of sodium. However, compared to well-understood lithium-ion storage mechanisms, sodium-ion storage remains relatively unexplored. Herein, we systematically determine the sodium-ion storage properties of anatase titanium dioxide (TiO2(A)). During the initial sodiation process, a thin surface layer (~3 to 5 nm) of crystalline TiO2(A) becomes amorphous but still undergoes Ti4+/Ti3+ redox reactions. A model explaining the role of the amorphous layer and the dependence of the specific capacity on the size of TiO2(A) nanoparticles is proposed. Amorphous nanoparticles of ~10 nm seem to be optimum in terms of achieving high specific capacity, on the order of 200 mAh g-1, at high charge/discharge rates. Kinetic studies of TiO2(A) nanoparticles indicate that sodium-ion storage is due to a surface-redox mechanism that is not dependent on nanoparticle size in contrast to the lithiation of TiO2(A) which is a diffusion-limited intercalation process. The surface-redox properties of TiO2(A) result in excellent rate capability, cycling stability and low overpotentials. Moreover, tailoring the surface-redox mechanism enables thick electrodes of TiO2(A) to retain high rate properties, and represents a promising direction for high-power sodium-ion storage.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View