Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Mechanism of Foreign DNA Selection in a Bacterial Adaptive Immune System

Abstract

In bacterial and archaeal CRISPR immune pathways, DNA sequences from invading bacteriophage or plasmids are integrated into CRISPR loci within the host genome, conferring immunity against subsequent infections. The ribonucleoprotein complex Cascade utilizes RNAs generated from these loci to target complementary "nonself" DNA sequences for destruction, while avoiding binding to "self" sequences within the CRISPR locus. Here we show that CasA, the largest protein subunit of Cascade, is required for nonself target recognition and binding. Combining a 2.3 Å crystal structure of CasA with cryo-EM structures of Cascade, we have identified a loop that is required for viral defense. This loop contacts a conserved three base pair motif that is required for nonself target selection. Our data suggest a model in which the CasA loop scans DNA for this short motif prior to target destabilization and binding, maximizing the efficiency of DNA surveillance by Cascade.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View