Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Characterization of pectinase-producing Saccharomyces cerevisiae UCDFST 09-448 and its effects on cull peach fermentations.

Abstract

UNLABELLED: Fermentation of pectin-rich biomass by Saccharomyces cerevisiae can produce bioethanol as a fuel replacement to combat carbon dioxide emissions from the combustion of fossil fuels. Saccharomyces cerevisiae UCDFST 09-448 produces its own pectinase enzymes potentially eliminating the need for commercial pectinases during fermentation. This research assessed growth, pectinase activity, and fermentative activity of S. cerevisiae UCDFST 09-448 and compared its performance to an industrial yeast strain, S. cerevisiae XR122N. Saccharomyces cerevisiae UCDFST 09-448s growth was inhibited by osmotic stress (xylose concentrations above 1 M), ethanol concentrations greater than 5% v/v, and temperatures outside of 30°C-37°C. However, S. cerevisiae UCDFST 09-448 was able to consistently grow in an industrial pH range (3-6). It was able to metabolize glucose, sucrose, and fructose but was unable to metabolize arabinose, xylose, and galacturonic acid. The pectinase enzyme produced by S. cerevisiae UCDFST 09-448 was active under typical fermentation conditions (35°C-37°C, pH 5.0). Regardless of S. cerevisiae UCDFST 09-448s limitations when compared to S. cerevisiae XR122N in 15% w/v peach fermentations, S. cerevisiae UCDFST 09-448 was still able to achieve maximum ethanol yields in the absence of commercial pectinases (44.7 ± 3.1 g/L). Under the same conditions, S. cerevisiae XR122N produced 39.5 ± 3.1 g/L ethanol. While S. cerevisiae UCDFST 09-448 may not currently be optimized for industrial fermentations, it is a step toward a consolidated bioprocessing approach to fermentation of pectin-rich biomass. ONE-SENTENCE SUMMARY: Saccharomyces cerevisiae UCDFST 09-448 demonstrates the potential to ferment pectin-rich biomass as part of a consolidated bioprocess, but is sensitive to industrial stressors.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View