Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Clinical significance and molecular annotation of cellular morphometric subtypes in lower-grade gliomas discovered by machine learning

Abstract

Background

Lower-grade gliomas (LGG) are heterogeneous diseases by clinical, histological, and molecular criteria. We aimed to personalize the diagnosis and therapy of LGG patients by developing and validating robust cellular morphometric subtypes (CMS) and to uncover the molecular signatures underlying these subtypes.

Methods

Cellular morphometric biomarkers (CMBs) were identified with artificial intelligence technique from TCGA-LGG cohort. Consensus clustering was used to define CMS. Survival analysis was performed to assess the clinical impact of CMBs and CMS. A nomogram was constructed to predict 3- and 5-year overall survival (OS) of LGG patients. Tumor mutational burden (TMB) and immune cell infiltration between subtypes were analyzed using the Mann-Whitney U test. The double-blinded validation for important immunotherapy-related biomarkers was executed using immunohistochemistry (IHC).

Results

We developed a machine learning (ML) pipeline to extract CMBs from whole-slide images of tissue histology; identifying and externally validating robust CMS of LGGs in multicenter cohorts. The subtypes had independent predicted OS across all three independent cohorts. In the TCGA-LGG cohort, patients within the poor-prognosis subtype responded poorly to primary and follow-up therapies. LGGs within the poor-prognosis subtype were characterized by high mutational burden, high frequencies of copy number alterations, and high levels of tumor-infiltrating lymphocytes and immune checkpoint genes. Higher levels of PD-1/PD-L1/CTLA-4 were confirmed by IHC staining. In addition, the subtypes learned from LGG demonstrate translational impact on glioblastoma (GBM).

Conclusions

We developed and validated a framework (CMS-ML) for CMS discovery in LGG associated with specific molecular alterations, immune microenvironment, prognosis, and treatment response.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View