Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Remote Liver Ischemic Preconditioning Protects against Sudden Cardiac Death via an ERK/GSK-3β-Dependent Mechanism

Abstract

Background

Preconditioning stimuli conducted in remote organs can protect the heart against subsequent ischemic injury, but effects on arrhythmogenesis and sudden cardiac death (SCD) are unclear. Here, we investigated the effect of remote liver ischemia preconditioning (RLIPC) on ischemia/reperfusion (I/R)-induced cardiac arrhythmia and sudden cardiac death (SCD) in vivo, and determined the potential role of ERK/GSK-3βsignaling.

Methods/results

Male Sprague Dawley rats were randomized to sham-operated, control, or RLIPC groups. RLIPC was induced by alternating four 5-minute cycles of liver ischemia with 5-minute intermittent reperfusions. To investigate I/R-induced arrhythmogenesis, hearts in each group were subsequently subjected to 5-minute left main coronary artery ligation followed by 20-minute reperfusion. RLIPC reduced post-I/R ventricular arrhythmias, and decreased the incidence of SCD >threefold. RLIPC increased phosphorylation of cardiac ERK1/2, and GSK-3β Ser9 but not Tyr216 post-I/R injury. Inhibition of either GSK-3β (with SB216763) or ERK1/2 (with U0126) abolished RLIPC-induced antiarrhythmic activity and GSK-3β Ser9 and ERK1/2 phosphorylation, leaving GSK-3β Tyr216 phosphorylation unchanged.

Conclusions

RLIPC exerts a powerful antiarrhythmic effect and reduces predisposition to post-IR SCD. The underlying mechanism of RLIPC cardioprotection against I/R-induced early arrhythmogenesis may involve ERK1/2/GSK-3β Ser9-dependent pathways.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View