Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Empirical Quantification of Optic Nerve Strain Due to Horizontal Duction.

Abstract

Magnetic resonance imaging (MRI) was used to measure in vivo local strains in the optic nerve (ON) associated with horizontal duction in humans. Axial and coronal MRI were collected in target-controlled gazes in 24 eyes of 12 normal adults (six males and six females, 59 ± 16 years) during large (~28°) and moderate (~24°) ductions. The ON, globe, and extraocular muscles were manually identified, and the pixels were converted to point-sets that were registered across different imaging planes and eye positions. Shape of the ON was parameterized based on point-sets. Displacements and strains were computed by comparing deformed with initial ON configurations. Displacements were the largest in the most anterior region. However, strains from adduction were uniform along the length of the ON, while those during abduction increased with distance from the globe and were maximal near the orbital apex. For large gaze angles, ON strain during abduction was primarily due to bending near the orbital apex that is less transmitted to the eye, but during adduction the ON undergoes uniform stretching that transmits much greater loading to the posterior eye, implied by greater strain on the ON.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View