Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Optical theorem and the inversion of cross section data for atom scattering from defects on surfaces

Published Web Location

https://doi.org/10.1063/1.469129Creative Commons 'BY' version 4.0 license
Abstract

The information content and properties of the cross section for atom scattering from a defect on a flat surface are investigated. Using the Sudden approximation, a simple expression is obtained that relates the cross section to the underlying atom/defect interaction potential. An approximate inversion formula is given, that determines the shape function of the defect from the scattering data. Another inversion formula approximately determines the potential due to a weak corrugation in the case of substitutional disorder. An optical theorem, derived in the framework of the Sudden approximation, plays a central role in deriving the equations that conveniently relate the interaction potential to the cross section. Also essential for the result is the equivalence of the operational definition for the cross section for scattering by a defect, given by Poelsema and Comsa, and the formal definition from quantum scattering theory. This equivalence is established here. The inversion result is applied to determine the shape function of an Ag atom on Pt(111) from scattering data. © 1995 American Institute of Physics.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View