Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

A New Reconfigurable Antenna MIMO Architecture for mmWave Communication

Abstract

The large spectrum available in the millimeter- Wave (mmWave) band has emerged as a promising solution for meeting the huge capacity requirements of the 5th generation (5G) wireless networks. However, to fully harness the potential of mmWave communications, obstacles such as severe path loss, channel sparsity and hardware complexity should be overcome. In this paper, we introduce a generalized reconfigurable antenna multiple-input multiple-output (MIMO) architecture that takes advantage of lens-based reconfigurable antennas. The considered antennas can support multiple radiation patterns simultaneously by using a single RF chain. The degrees of freedom provided by the reconfigurable antennas are used to, first, combat channel sparsity in MIMO mmWave systems. Further, to suppress high path loss and shadowing at mmWave frequencies, we use a rate- one space-time block code. Our analysis and simulations show that the proposed reconfigurable MIMO architecture achieves full-diversity gain by using linear receivers and without requiring channel state information at the transmitter. Moreover, simulations show that the proposed architecture outperforms traditional MIMO transmission schemes in mmWave channel settings.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View