Skip to main content
Open Access Publications from the University of California

Incorporating Human Beliefs and Behaviors into Wildlife Ecology

  • Author(s): McInturff, Michael Charles Alexander
  • Advisor(s): Brashares, Justin S
  • et al.

Like much of the global biosphere, wildlife species have experienced rapid declines during the Anthropocene. Wildlife ecologists have responded to these crises by developing a range of technologies, techniques, and large datasets, which together have revolutionized the field, provided novel insights into the movements and behaviors of animals, and identified new risks and impacts to wildlife in a human-dominated world. While these advances have been vitally important, wildlife ecology has been slower to recognize and incorporate humans themselves into its new research domains. The chapters of this dissertation explore methods for better incorporating human behaviors, beliefs, actions, and infrastructure into the theories and approaches in wildlife ecology that have flourished in the last two decades. The research presented here demonstrates the importance of linking human beliefs and behaviors to wildlife ecology both by presenting novel findings and by showing the opportunities missed when narrow approaches are applied to complex socio-ecological problems.

In Chapter 1, I provide a general introduction on the theories underlying this research, contextualize the research questions in light of the loss and recovery of large predators, and describe the research site where I collected much of the data for this dissertation. In Chapter 2, I apply the methods of movement ecology to some of the first fine-scale telemetry data collected on rifle hunters. I draw conclusions about their individual, site-level, and regional-level hunting behaviors and discuss the broad implications of these findings for hunting management. In Chapter 3, I examine livestock-predator conflict using approaches from both ecology and the social sciences. I describe a form of selection bias that is likely widespread but unreported due to the omission of social data from ecological models of conflict, and I offer guidelines for combining and translating ecological and social research on conflict. In Chapter 4, I explore the ecological impacts of one of the most globally widespread human constructions, the fence. I show for the first time the potential extent of fencing at large scales and discuss the wide variety of ecological effects of fences for both humans and ecosystems. I further highlight biases and gaps in fence research that have thus far limited a complete understanding of the environmental effects of these features. In Chapter 5, I conclude by making recommendations regarding how research might better incorporate human perceptions, decisions, and actions into ecology.

Main Content
Current View