Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Comparison of DSC‐MRI post‐processing techniques in predicting microvascular histopathology in patients newly diagnosed with GBM

Abstract

Purpose

To evaluate which common post-processing method applied to gradient-echo DSC-MRI data, acquired with a single gadolinium injection and low flip-angle, most accurately reflects microvascular histopathology for patients with de novo, treatment-naive glioblastoma multiforme (GBM).

Materials and methods

Seventy-two tissue samples were collected from 35 patients with treatment-naive GBM. Sample locations were co-registered to preoperative gradient-echo dynamic susceptibility contrast (DSC) MRI acquired with 35° flip-angle and 0.1 mmol/kg gadolinium. Estimates of blood volume and leakiness at each sample location were calculated using four common postprocessing methods (leakage-corrected nonlinear gamma-variate, non-parametric, scaled MR-signal, and unscaled MR-signal). Tissue sample microvascular morphology was characterized using Factor VIII immunohistochemical analysis. A random-effects regression model, adjusted for repeated measures and contrast-enhancement (CE), identified whether MR parameter estimates significantly predicted IHC findings.

Results

Elevated blood volume estimates from nonlinear and non-parametric methods significantly predicted increased microvascular hyperplasia. Abnormal microvasculature existed beyond the CE-lesion and was significantly reflected by increased blood volume from nonlinear, non-parametric, and scaled MR-signal analysis.

Conclusion

This study provides histopathological support for both non-parametric and nonlinear post-processing of low flip-angle DSC-MRI for characterizing microvascular hyperplasia within GBM. Non-parametric analysis with a single gadolinium injection may be a particularly useful strategy clinically, as it requires less computational expense and limits gadolinium exposure.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View