Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Overexpression of MMPs in Corneas Requiring Penetrating and Deep Anterior Lamellar Keratoplasty

Abstract

Purpose

Matrix metalloproteinases (MMPs) comprise a family of zinc-dependent endopeptidases involved in wound healing processes, including neovascularization and fibrosis. We assessed MMP protein expression levels in diseased corneas of patients requiring penetrating and deep anterior lamellar keratoplasty. The purpose of this study was to test the hypothesis that upregulation of MMPs in diseased corneas is positively associated with clinical levels of corneal neovascularization and fibrosis.

Methods

Protein expression levels of nine individual MMPs were quantified simultaneously in human corneal lysates by using the Bio-Plex Pro Human MMP 9-Plex Panel and the MAGPIX technology. Measurements of MMP1, MMP2, MMP3, MMP7, MMP8, MMP9, MMP10, MMP12, and MMP13 were performed on diseased specimens from 21 patients undergoing corneal transplantation (17 for penetrating keratoplasty and 4 for deep anterior lamellar keratoplasty) and 6 normal control corneas.

Results

Luminex-based expression analysis revealed a significant overexpression of four of the nine MMPs tested (MMP2, MMP8, MMP12, and MMP13) in patient samples compared to control. Significant overexpression of MMP1, MMP2, MMP8, MMP12, and MMP13 was observed in diseased corneas with neovascularization compared with diseased corneas without neovascularization. Overexpression of MMP1, MMP2, MMP8, MMP12, and MMP13 also corresponded with the levels of corneal fibrosis. Finally, reduced expression of MMP3 was detected in keratoconus patients.

Conclusions

Multiple MMPs are expressed in the corneas of patients with chronic disease requiring keratoplasty even when the pathologic process appears to be clinically inactive. In particular, the expression of several MMPs (MMP2, MMP8, MMP12, and MMP13) is positively associated with increased levels corneal fibrosis and neovascularization.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View