Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

The tetraspan protein EMP2 modulates the surface expression of caveolins and glycosylphosphatidyl inositol-linked proteins

Abstract

Caveolae are a subset of lipid rafts enriched in glycosphingolipids and cholesterol-rich domains, but selectively lacking glycosylphosphatidyl inositol-anchored proteins (GPI-APs). Caveolin proteins are the organizing component of caveolae, but the corresponding proteins for other classes of lipid rafts are poorly defined. Epithelial membrane protein-2 (EMP2), a member of the four-transmembrane superfamily, facilitates plasma membrane delivery of certain integrins. In this study, we found by laser confocal microscopy that EMP2 was associated with GPI-APs (detected by the GPI-AP binding bacterial toxin proaerolysin). Biochemical membrane fractionation and methyl-beta-cyclodextrin treatment demonstrated that this association occurred within lipid rafts. EMP2 did not associate with caveolin-bearing membrane structures, and recombinant overexpression of EMP2 in NIH3T3 cells decreased caveolin-1 and caveolin-2 protein levels while increasing the surface expression of GPI-APs. Conversely, a ribozyme construct that specifically cleaves the EMP2 transcript reduced surface GPI-APs and increased caveolin protein expression. These findings suggest that EMP2 facilitates the formation and surface trafficking of lipid rafts bearing GPI-APs. and reduces caveolin expression, resulting in impaired formation of caveolae.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View