Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Whole‐brain vessel wall MRI: A parameter tune‐up solution to improve the scan efficiency of three‐dimensional variable flip‐angle turbo spin‐echo

Abstract

Purpose

To propose and evaluate a parameter tune-up solution to expedite a three-dimensional (3D) variable-flip-angle turbo spin-echo (TSE) sequence for whole-brain intracranial vessel wall (IVW) imaging.

Materials and methods

Elliptical k-space sampling and prolonged echo train length (ETL), were used to expedite a 3D variable-flip-angle TSE-based sequence. To compensate for the potential loss in vessel wall signal, optimal combination of prescribed T2 and ETL was experimentally investigated on 22 healthy volunteers at 3 Tesla. The optimized protocol (7-8 min) was then compared with a previous protocol (reference protocol, 11-12 min) in terms of signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), vessel wall sharpness, and wall delineation quality on a 4-point scale (0:poor; 3:excellent) in 10 healthy volunteers. A pilot study of five patients was performed and lesion delineation score was used to demonstrate the diagnostic quality.

Results

A protocol with ETL = 52 and prescribed T2  = 170 ms was deemed an optimized one, which, compared with the reference protocol, provided significantly improved wall SNR (12.0 ± 1.3 versus 10.0 ± 1.1; P = 0.002), wall-lumen CNR (9.7 ± 1.2 versus 8.0 ± 0.9; P = 0.002), wall-CSF CNR (2.8 ± 1.0 versus 1.7 ± 1.0; P = 0.026), similar vessel wall sharpness at both inner (1.59 ± 0.18 versus 1.58 ± 0.14, P = 0.87) and outer (1.71 ± 0.25 versus 1.83 ± 0.30; P = 0.18) boundaries, and comparable vessel wall delineation score for individual segments (1.95-3; P > 0.06). In all patients, atherosclerotic plaques (10) or wall dissection (5) were identified with a delineation score of 3 or 2.

Conclusion

A parameter tune-up solution can accelerate 3D variable-flip-angle TSE acquisitions, particularly allowed for expedited whole-brain IVW imaging with preserved wall delineation quality.

Level of evidence

2. Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:751-757.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View