- Main
Semiempirical method for examining asynchronicity in metal–oxido-mediated C–H bond activation
Published Web Location
https://doi.org/10.1073/pnas.2108648118Abstract
The oxidation of substrates via the cleavage of thermodynamically strong C-H bonds is an essential part of mammalian metabolism. These reactions are predominantly carried out by enzymes that produce high-valent metal-oxido species, which are directly responsible for cleaving the C-H bonds. While much is known about the identity of these transient intermediates, the mechanistic factors that enable metal-oxido species to accomplish such difficult reactions are still incomplete. For synthetic metal-oxido species, C-H bond cleavage is often mechanistically described as synchronous, proton-coupled electron transfer (PCET). However, data have emerged that suggest that the basicity of the M-oxido unit is the key determinant in achieving enzymatic function, thus requiring alternative mechanisms whereby proton transfer (PT) has a more dominant role than electron transfer (ET). To bridge this knowledge gap, the reactivity of a monomeric MnIV-oxido complex with a series of external substrates was studied, resulting in a spread of over 104 in their second-order rate constants that tracked with the acidity of the C-H bonds. Mechanisms that included either synchronous PCET or rate-limiting PT, followed by ET, did not explain our results, which led to a proposed PCET mechanism with asynchronous transition states that are dominated by PT. To support this premise, we report a semiempirical free energy analysis that can predict the relative contributions of PT and ET for a given set of substrates. These findings underscore why the basicity of M-oxido units needs to be considered in C-H functionalization.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-